Controllable Growth of Nanoscale Conductive Filaments in Solid-Electrolyte-Based ReRAM by Using a Metal Nanocrystal Covered Bottom Electrode

电阻随机存取存储器 材料科学 纳米晶 纳米技术 纳米尺度 成核 电极 电解质 导电体 光电子学 复合材料 化学 物理化学 有机化学
作者
Qi Liu,Shibing Long,Hangbing Lv,Wei Wang,Jiebin Niu,Zongliang Huo,Junning Chen,Ming Liu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:4 (10): 6162-6168 被引量:453
标识
DOI:10.1021/nn1017582
摘要

Resistive memory (ReRAM) based on a solid-electrolyte insulator is a promising nanoscale device and has great potentials in nonvolatile memory, analog circuits, and neuromorphic applications. The underlying resistive switching (RS) mechanism of ReRAM is suggested to be the formation and rupture of nanoscale conductive filament (CF) inside the solid-electrolyte layer. However, the random nature of the nucleation and growth of the CF makes their formation difficult to control, which is a major obstacle for ReRAM performance improvement. Here, we report a novel approach to resolve this challenge by adopting a metal nanocrystal (NC) covered bottom electrode (BE) to replace the conventional ReRAM BE. As a demonstration vehicle, a Ag/ZrO2/Cu NC/Pt structure is prepared and the Cu NC covered Pt BE can control CF nucleation and growth to provide superior uniformity of RS properties. The controllable growth of nanoscale CF bridges between Cu NC and Ag top electrode has been vividly observed by transmission electron microscopy (TEM). On the basis of energy-dispersive X-ray spectroscopy (EDS) and elemental mapping analyses, we further confirm that the chemical contents of the CF are mainly Ag atoms. These testing/metrology results are consistent with the simulation results of electric-field distribution, showing that the electric field will enhance and concentrate on the NC sites and control location and orientation of Ag CFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的鹅完成签到,获得积分10
1秒前
annter完成签到,获得积分20
1秒前
杨林华完成签到,获得积分10
1秒前
2秒前
朴实山兰完成签到,获得积分10
4秒前
5秒前
annter发布了新的文献求助10
5秒前
LOVEMEVOL完成签到,获得积分10
6秒前
haan发布了新的文献求助30
6秒前
7秒前
坚强亦丝应助Bismarck采纳,获得10
8秒前
8秒前
汪洋发布了新的文献求助10
9秒前
翳潇发布了新的文献求助10
13秒前
我是老大应助冰糖采纳,获得10
13秒前
14秒前
耶耶耶完成签到 ,获得积分10
14秒前
adam完成签到,获得积分10
15秒前
guo完成签到,获得积分0
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
所所应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
guojinyu应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
丘比特应助haan采纳,获得10
17秒前
俊逸的卿关注了科研通微信公众号
19秒前
19秒前
咸鱼发布了新的文献求助10
21秒前
忞航完成签到 ,获得积分10
21秒前
科研通AI5应助欢喜的天空采纳,获得10
22秒前
xuninghao完成签到,获得积分10
22秒前
冰糖应助文件撤销了驳回
23秒前
阿航完成签到,获得积分10
24秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726589
求助须知:如何正确求助?哪些是违规求助? 3271556
关于积分的说明 9972715
捐赠科研通 2987017
什么是DOI,文献DOI怎么找? 1638598
邀请新用户注册赠送积分活动 778179
科研通“疑难数据库(出版商)”最低求助积分说明 747508