Machine-learning-assisted materials discovery using failed experiments

计算机科学 数据科学 人工智能
作者
Paul Raccuglia,Katherine C. Elbert,Philip Adler,Casey Falk,Malia B. Wenny,Aurelio Mollo,Mat­thias Zeller,Sorelle A. Friedler,Joshua Schrier,Alexander J. Norquist
出处
期刊:Nature [Nature Portfolio]
卷期号:533 (7601): 73-76 被引量:1432
标识
DOI:10.1038/nature17439
摘要

Inorganic-organic hybrid materials such as organically templated metal oxides, metal-organic frameworks (MOFs) and organohalide perovskites have been studied for decades, and hydrothermal and (non-aqueous) solvothermal syntheses have produced thousands of new materials that collectively contain nearly all the metals in the periodic table. Nevertheless, the formation of these compounds is not fully understood, and development of new compounds relies primarily on exploratory syntheses. Simulation- and data-driven approaches (promoted by efforts such as the Materials Genome Initiative) provide an alternative to experimental trial-and-error. Three major strategies are: simulation-based predictions of physical properties (for example, charge mobility, photovoltaic properties, gas adsorption capacity or lithium-ion intercalation) to identify promising target candidates for synthetic efforts; determination of the structure-property relationship from large bodies of experimental data, enabled by integration with high-throughput synthesis and measurement tools; and clustering on the basis of similar crystallographic structure (for example, zeolite structure classification or gas adsorption properties). Here we demonstrate an alternative approach that uses machine-learning algorithms trained on reaction data to predict reaction outcomes for the crystallization of templated vanadium selenites. We used information on 'dark' reactions--failed or unsuccessful hydrothermal syntheses--collected from archived laboratory notebooks from our laboratory, and added physicochemical property descriptions to the raw notebook information using cheminformatics techniques. We used the resulting data to train a machine-learning model to predict reaction success. When carrying out hydrothermal synthesis experiments using previously untested, commercially available organic building blocks, our machine-learning model outperformed traditional human strategies, and successfully predicted conditions for new organically templated inorganic product formation with a success rate of 89 per cent. Inverting the machine-learning model reveals new hypotheses regarding the conditions for successful product formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助1111111111111采纳,获得10
刚刚
搞怪南风完成签到,获得积分10
刚刚
文章使我快了完成签到,获得积分10
刚刚
cooper完成签到 ,获得积分10
1秒前
Ou发布了新的文献求助10
1秒前
sxx完成签到,获得积分10
1秒前
上官若男应助tanglu采纳,获得10
1秒前
麋鹿完成签到 ,获得积分10
1秒前
公西翠萱完成签到 ,获得积分10
1秒前
qixiaoqi发布了新的文献求助10
2秒前
博慧完成签到 ,获得积分10
3秒前
小刘医生完成签到,获得积分10
5秒前
安安完成签到,获得积分10
5秒前
啊啊啊啊完成签到,获得积分10
5秒前
英俊的铭应助飞飞鱼采纳,获得10
7秒前
科目三应助zzz采纳,获得10
7秒前
小小西瓜萝卜青菜完成签到,获得积分10
7秒前
思源应助虚幻采枫采纳,获得10
8秒前
8秒前
不安的可乐完成签到,获得积分10
8秒前
9秒前
nano完成签到 ,获得积分10
9秒前
da完成签到,获得积分10
9秒前
科研通AI2S应助啊啊啊啊采纳,获得10
10秒前
cyndi发布了新的文献求助20
10秒前
11秒前
852应助小小西瓜萝卜青菜采纳,获得10
13秒前
sci完成签到,获得积分10
14秒前
醉熏的鑫发布了新的文献求助10
15秒前
Nizarn发布了新的文献求助10
15秒前
16秒前
16秒前
乐呵呵完成签到,获得积分10
16秒前
16秒前
忧心的惜天完成签到 ,获得积分10
16秒前
77完成签到,获得积分10
17秒前
yz发布了新的文献求助10
17秒前
周周南完成签到 ,获得积分10
20秒前
20秒前
zz完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds第二卷 1200
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038657
求助须知:如何正确求助?哪些是违规求助? 3576306
关于积分的说明 11375198
捐赠科研通 3306108
什么是DOI,文献DOI怎么找? 1819379
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066