Machine-learning-assisted materials discovery using failed experiments

计算机科学 数据科学 人工智能
作者
Paul Raccuglia,Katherine C. Elbert,Philip Adler,Casey Falk,Malia B. Wenny,Aurelio Mollo,Mat­thias Zeller,Sorelle A. Friedler,Joshua Schrier,Alexander J. Norquist
出处
期刊:Nature [Nature Portfolio]
卷期号:533 (7601): 73-76 被引量:1432
标识
DOI:10.1038/nature17439
摘要

Inorganic-organic hybrid materials such as organically templated metal oxides, metal-organic frameworks (MOFs) and organohalide perovskites have been studied for decades, and hydrothermal and (non-aqueous) solvothermal syntheses have produced thousands of new materials that collectively contain nearly all the metals in the periodic table. Nevertheless, the formation of these compounds is not fully understood, and development of new compounds relies primarily on exploratory syntheses. Simulation- and data-driven approaches (promoted by efforts such as the Materials Genome Initiative) provide an alternative to experimental trial-and-error. Three major strategies are: simulation-based predictions of physical properties (for example, charge mobility, photovoltaic properties, gas adsorption capacity or lithium-ion intercalation) to identify promising target candidates for synthetic efforts; determination of the structure-property relationship from large bodies of experimental data, enabled by integration with high-throughput synthesis and measurement tools; and clustering on the basis of similar crystallographic structure (for example, zeolite structure classification or gas adsorption properties). Here we demonstrate an alternative approach that uses machine-learning algorithms trained on reaction data to predict reaction outcomes for the crystallization of templated vanadium selenites. We used information on 'dark' reactions--failed or unsuccessful hydrothermal syntheses--collected from archived laboratory notebooks from our laboratory, and added physicochemical property descriptions to the raw notebook information using cheminformatics techniques. We used the resulting data to train a machine-learning model to predict reaction success. When carrying out hydrothermal synthesis experiments using previously untested, commercially available organic building blocks, our machine-learning model outperformed traditional human strategies, and successfully predicted conditions for new organically templated inorganic product formation with a success rate of 89 per cent. Inverting the machine-learning model reveals new hypotheses regarding the conditions for successful product formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
领导范儿应助WN采纳,获得10
1秒前
hh完成签到,获得积分10
1秒前
猪猪hero发布了新的文献求助10
1秒前
karate09judges完成签到 ,获得积分10
2秒前
Liufgui应助独特元蝶采纳,获得10
2秒前
5秒前
潇湘雪月发布了新的文献求助10
6秒前
9秒前
酷波er应助hello采纳,获得10
9秒前
9秒前
啦啦发布了新的文献求助10
9秒前
唯美发布了新的文献求助10
13秒前
hnlgdx发布了新的文献求助10
17秒前
一根完成签到,获得积分20
17秒前
七月完成签到 ,获得积分10
19秒前
xiaojiahuo完成签到,获得积分10
20秒前
21秒前
猪猪hero发布了新的文献求助10
21秒前
自信不愁完成签到,获得积分10
22秒前
潇湘雪月发布了新的文献求助10
23秒前
Arthur完成签到,获得积分10
24秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
芋孟齐完成签到,获得积分20
25秒前
猪猪hero发布了新的文献求助10
27秒前
28秒前
高手发布了新的文献求助10
28秒前
28秒前
WN发布了新的文献求助10
28秒前
超级的鹅发布了新的文献求助10
31秒前
FashionBoy应助axin采纳,获得10
32秒前
胡霖完成签到,获得积分10
33秒前
流飒完成签到,获得积分10
33秒前
香蕉觅云应助牛马码字员采纳,获得10
34秒前
猪猪hero发布了新的文献求助10
34秒前
CAOHOU应助林sir采纳,获得10
34秒前
34秒前
甜甜亦巧完成签到,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136