亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-learning-assisted materials discovery using failed experiments

计算机科学 数据科学 人工智能
作者
Paul Raccuglia,Katherine C. Elbert,Philip Adler,Casey Falk,Malia B. Wenny,Aurelio Mollo,Mat­thias Zeller,Sorelle A. Friedler,Joshua Schrier,Alexander J. Norquist
出处
期刊:Nature [Nature Portfolio]
卷期号:533 (7601): 73-76 被引量:1432
标识
DOI:10.1038/nature17439
摘要

Inorganic-organic hybrid materials such as organically templated metal oxides, metal-organic frameworks (MOFs) and organohalide perovskites have been studied for decades, and hydrothermal and (non-aqueous) solvothermal syntheses have produced thousands of new materials that collectively contain nearly all the metals in the periodic table. Nevertheless, the formation of these compounds is not fully understood, and development of new compounds relies primarily on exploratory syntheses. Simulation- and data-driven approaches (promoted by efforts such as the Materials Genome Initiative) provide an alternative to experimental trial-and-error. Three major strategies are: simulation-based predictions of physical properties (for example, charge mobility, photovoltaic properties, gas adsorption capacity or lithium-ion intercalation) to identify promising target candidates for synthetic efforts; determination of the structure-property relationship from large bodies of experimental data, enabled by integration with high-throughput synthesis and measurement tools; and clustering on the basis of similar crystallographic structure (for example, zeolite structure classification or gas adsorption properties). Here we demonstrate an alternative approach that uses machine-learning algorithms trained on reaction data to predict reaction outcomes for the crystallization of templated vanadium selenites. We used information on 'dark' reactions--failed or unsuccessful hydrothermal syntheses--collected from archived laboratory notebooks from our laboratory, and added physicochemical property descriptions to the raw notebook information using cheminformatics techniques. We used the resulting data to train a machine-learning model to predict reaction success. When carrying out hydrothermal synthesis experiments using previously untested, commercially available organic building blocks, our machine-learning model outperformed traditional human strategies, and successfully predicted conditions for new organically templated inorganic product formation with a success rate of 89 per cent. Inverting the machine-learning model reveals new hypotheses regarding the conditions for successful product formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃发布了新的文献求助30
15秒前
田様应助最最最采纳,获得10
33秒前
38秒前
39秒前
不懂白完成签到 ,获得积分10
1分钟前
1分钟前
Borhan发布了新的文献求助10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
1分钟前
rumengren完成签到 ,获得积分10
2分钟前
2分钟前
嘉嘉完成签到 ,获得积分10
2分钟前
重要元灵完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
俏皮元珊完成签到 ,获得积分10
4分钟前
21完成签到 ,获得积分10
4分钟前
4分钟前
自然芷文发布了新的文献求助10
4分钟前
112345完成签到 ,获得积分10
4分钟前
自然芷文完成签到,获得积分10
5分钟前
5分钟前
迷人问兰发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得19
5分钟前
sjyu1985完成签到 ,获得积分10
6分钟前
闻巷雨完成签到 ,获得积分10
6分钟前
pegasus0802完成签到 ,获得积分10
7分钟前
5823364完成签到,获得积分10
7分钟前
automan完成签到,获得积分10
7分钟前
天亮polar完成签到,获得积分10
7分钟前
7分钟前
8分钟前
8分钟前
朴实云应发布了新的文献求助10
8分钟前
林子青完成签到,获得积分10
8分钟前
核桃发布了新的文献求助30
9分钟前
李健应助reerwt采纳,获得10
9分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990049
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256369
捐赠科研通 3270998
什么是DOI,文献DOI怎么找? 1805166
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228