3D printing of osteocytic Dll4 integrated with PCL for cell fate determination towards osteoblasts in vitro

间质细胞 细胞生物学 成骨细胞 Notch信号通路 化学 骨髓 细胞命运测定 细胞分化 血管生成 胚胎干细胞 转录因子 体外 信号转导 生物 免疫学 癌症研究 生物化学 基因
作者
Pengtao Wang,Xiaofang Wang,Bo Wang,Xian Li,Zhengsong Xie,Jie Chen,Tasuku Honjo,Xiaolin Tu
出处
期刊:Bio-design and manufacturing [Springer Nature]
卷期号:5 (3): 497-511 被引量:8
标识
DOI:10.1007/s42242-022-00196-1
摘要

Since 3D printed hard materials could match the shape of bone, cell survival and fate determination towards osteoblasts in such materials have become a popular research target. In this study, a scaffold of hard material for 3D fabrication was designed to regulate developmental signal (Notch) transduction guiding osteoblast differentiation. We established a polycaprolactone (PCL) and cell-integrated 3D printing system (PCI3D) to reciprocally print the beams of PCL and cell-laden hydrogel for a module. This PCI3D module holds good cell viability of over 87%, whereas cells show about sixfold proliferation in a 7-day culture. The osteocytic MLO-Y4 was engineered to overexpress Notch ligand Dll4, making up 25% after mixing with 75% stromal cells in the PCI3D module. Osteocytic Dll4, unlike other delta-like family members such as Dll1 or Dll3, promotes osteoblast differentiation and the mineralization of primary mouse and a cell line of bone marrow stromal cells when cultured in a PCI3D module for up to 28 days. Mechanistically, osteocytic Dll4 could not promote osteogenic differentiation of the primary bone marrow stromal cells (BMSCs) after conditional deletion of the Notch transcription factor RBPjκ by Cre recombinase. These data indicate that osteocytic Dll4 activates RBPjκ-dependent canonical Notch signaling in BMSCs for their oriented differentiation towards osteoblasts. Additionally, osteocytic Dll4 holds a great potential for angiogenesis in human umbilical vein endothelial cells within modules. Our study reveals that osteocytic Dll4 could be the osteogenic niche determining cell fate towards osteoblasts. This will open a new avenue to overcome the current limitation of poor cell viability and low bioactivity of traditional orthopedic implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LibingzZ完成签到,获得积分10
1秒前
不配.应助香烟小厨采纳,获得20
1秒前
再睡一夏发布了新的文献求助10
1秒前
JamesPei应助虚幻友瑶采纳,获得10
2秒前
Ooops完成签到,获得积分10
2秒前
hhh完成签到 ,获得积分20
2秒前
健壮雨兰完成签到,获得积分10
3秒前
打打应助zhh采纳,获得10
4秒前
4秒前
桐桐应助HalaMadrid采纳,获得10
5秒前
6秒前
aaoo完成签到,获得积分10
6秒前
小魏哥哥完成签到,获得积分10
7秒前
简单男孩完成签到,获得积分10
8秒前
科研通AI2S应助李白采纳,获得10
8秒前
Struggle完成签到 ,获得积分10
8秒前
10秒前
Hayat应助June-ho采纳,获得30
10秒前
zhh完成签到,获得积分10
10秒前
10秒前
清爽的元珊关注了科研通微信公众号
13秒前
香蕉冰真完成签到 ,获得积分10
14秒前
Qiqinnn完成签到 ,获得积分10
14秒前
田様应助山水木采纳,获得10
15秒前
无辜的朋友完成签到,获得积分10
16秒前
16秒前
WFLLL完成签到,获得积分10
16秒前
米乐时光完成签到 ,获得积分10
18秒前
yellow完成签到,获得积分10
18秒前
perfect完成签到 ,获得积分10
19秒前
华仔应助mio采纳,获得10
20秒前
20秒前
21秒前
WIK完成签到,获得积分10
22秒前
乐乐应助郝宝真采纳,获得10
22秒前
xiaou完成签到,获得积分10
23秒前
24秒前
Dr W完成签到 ,获得积分10
24秒前
mimi发布了新的文献求助10
24秒前
Pepper发布了新的文献求助20
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137238
求助须知:如何正确求助?哪些是违规求助? 2788358
关于积分的说明 7785777
捐赠科研通 2444399
什么是DOI,文献DOI怎么找? 1299897
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023