材料科学
锂(药物)
热扩散率
涂层
电化学
化学工程
离子电导率
电导率
碳纤维
纳米颗粒
纳米技术
扩散
电极
复合材料
电解质
物理化学
复合数
内分泌学
工程类
物理
热力学
化学
医学
量子力学
作者
Shaohua Shi,Yulin Tang,Guizhen Wang,Weizhe Yu,Gengping Wan,Lihong Wu,Zhen Deng,Guilong Wang
出处
期刊:Nano Energy
[Elsevier]
日期:2022-03-10
卷期号:96: 107132-107132
被引量:40
标识
DOI:10.1016/j.nanoen.2022.107132
摘要
The synchronous improvement of ionic diffusivity and electronic conductivity of Ti2Nb10O29 (TNO) is of enormous significance for boosting its high electrochemical performance. In our work, a novel gradient carbon coating strategy was first proposed to synthesize the pomegranate-type N-doped carbon coated TNO microspheres ([email protected]), in which not only TNO microspheres but also TNO secondary nanoparticles surfaces are uniformly coated with an ultrathin carbon film. The study results demonstrate that such ingenious configuration can combine conductive coatings, nanocrystallization technology, and defect engineering together to greatly improve the ionic diffusivity and electronic conductivity. Moreover, the carbon coatings as the armor can effectively inhibit the volume change of TNO, and thus enhance its cycling durability. Density functional theory (DFT) calculations were also employed to illustrate the nature influence on lithium-ion diffusion coefficient and electronic conductivity. Attributing to the synergistic effect, the [email protected] exhibit superior rate capability (328 mA h g−1 at 0.1 C and 258 mA h g−1 at 10 C) and remarkable cyclability (210 mA h g−1 at 10 C after 1000 cycles) in half-cells. The full-cell of LiFePO||[email protected] also show notable rate capability (271 mA h g−1 at 0.2 C and 211 mA h g−1 at 10 C) and remarkable cyclability (178 mA h g−1 at 10 C after 1000 cycles). This ingenious structural design may provide a new direction for the construction of other high-quality electrodes in lithium-ion batteries (LIBs).
科研通智能强力驱动
Strongly Powered by AbleSci AI