A deep learning framework for enhancer prediction using word embedding and sequence generation

增强子 计算机科学 人工智能 嵌入 计算生物学 深度学习 基因 模式识别(心理学) 机器学习 转录因子 生物 遗传学
作者
Qitao Geng,Ruifu Yang,Lina Zhang
出处
期刊:Biophysical Chemistry [Elsevier]
卷期号:286: 106822-106822 被引量:6
标识
DOI:10.1016/j.bpc.2022.106822
摘要

Enhancers are non-coding DAN fragments that play key roles in gene regulations and can promote the transcription of structural genes, thereby affecting the expression of structural protein catalytic enzymes and regulatory proteins. Accurate identification of enhancers helps to understand the transcription of structural genes and the development of human tumorigenesis, diagnosis and treatment. The enhancer sequences have high position variations and dispersions, and the identification of enhancers is more challenging than other genetic factors. Based on word embedding and sequence generative adversarial networks, a deep learning framework for enhancer identification is proposed. Firstly, considering the small number of sequences in the benchmark dataset, RankGAN is used to amplify the dataset size while maintaining the data characteristics. Then, in view of the similarity between DNA sequence and natural language, DNA sequence is regarded as a sentence composed of multiple "words", and the word embedding technology FastText is applied to transform it into a numerical matrix. To extract the dependencies and highly abstract features of nucleotides in DNA sequences, a Long Short-Term Memory Convolutional Neural network (LSTM-CNN) is constructed to perform the identification task. On the independent test set, the accuracy and Matthew's correlation coefficient (MCC) for enhancer prediction are 0.7525 and 0.5051, respectively. For the enhancer type prediction, the accuracy and MCC of this method are 0.6972 and 0.3954, respectively. Compared with existing methods, this method achieves more satisfactory results for the prediction of enhancers and their types. This study will further enrich the application of natural language processing in bioinformatics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜡笔小新完成签到,获得积分10
刚刚
123完成签到,获得积分10
1秒前
六水居士发布了新的文献求助10
1秒前
完美世界应助aaa采纳,获得10
2秒前
科研通AI5应助cang采纳,获得10
2秒前
jdwxiang123发布了新的文献求助10
3秒前
无花果应助稻子采纳,获得10
3秒前
荣一发布了新的文献求助10
3秒前
蜡笔小新发布了新的文献求助10
3秒前
mymEN发布了新的文献求助10
4秒前
5秒前
soso1010发布了新的文献求助10
5秒前
曲阁完成签到 ,获得积分10
6秒前
YG完成签到,获得积分10
8秒前
研友_Ze2wB8完成签到,获得积分10
8秒前
bkagyin应助浮浮采纳,获得10
8秒前
8秒前
香蕉觅云应助Cys采纳,获得10
9秒前
9秒前
夏天来了发布了新的文献求助30
9秒前
嗨嗨嗨完成签到 ,获得积分10
10秒前
可爱的函函应助六水居士采纳,获得10
11秒前
Jasper应助称心曼安采纳,获得10
11秒前
Seoalissn完成签到,获得积分10
13秒前
霸气狄公完成签到,获得积分10
13秒前
哇哈哈发布了新的文献求助10
13秒前
天天快乐应助研友_Ze2wB8采纳,获得10
14秒前
CodeCraft应助优雅惜雪采纳,获得10
14秒前
时与远方应助bwm采纳,获得10
14秒前
jackdu发布了新的文献求助10
14秒前
15秒前
Tycoon完成签到,获得积分10
15秒前
15秒前
yangyang发布了新的文献求助10
16秒前
Magical完成签到,获得积分10
16秒前
18秒前
JD完成签到 ,获得积分20
20秒前
20秒前
23秒前
Orange应助开放的果汁采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Host Response to Biomaterials 2000
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320