Predicting Solute Descriptors for Organic Chemicals by a Deep Neural Network (DNN) Using Basic Chemical Structures and a Surrogate Metric

塔夫特方程 生物浓缩 分配系数 自由能关系 公制(单位) 人工神经网络 生物系统 数量结构-活动关系 化学 生物累积 人工智能 机器学习 计算机科学 环境化学 色谱法 工程类 有机化学 动力学 运营管理 物理 反应速率常数 生物 量子力学 取代基
作者
Kai Zhang,Huichun Zhang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (3): 2054-2064 被引量:12
标识
DOI:10.1021/acs.est.1c05398
摘要

Solute descriptors have been widely used to model chemical transfer processes through poly-parameter linear free energy relationships (pp-LFERs); however, there are still substantial difficulties in obtaining these descriptors accurately and quickly for new organic chemicals. In this research, models (PaDEL-DNN) that require only SMILES of chemicals were built to satisfactorily estimate pp-LFER descriptors using deep neural networks (DNN) and the PaDEL chemical representation. The PaDEL-DNN-estimated pp-LFER descriptors demonstrated good performance in modeling storage-lipid/water partitioning coefficient (log Kstorage-lipid/water), bioconcentration factor (BCF), aqueous solubility (ESOL), and hydration free energy (freesolve). Then, assuming that the accuracy in the estimated values of widely available properties, e.g., logP (octanol-water partition coefficient), can calibrate estimates for less available but related properties, we proposed logP as a surrogate metric for evaluating the overall accuracy of the estimated pp-LFER descriptors. When using the pp-LFER descriptors to model log Kstorage-lipid/water, BCF, ESOL, and freesolve, we achieved around 0.1 log unit lower errors for chemicals whose estimated pp-LFER descriptors were deemed "accurate" by the surrogate metric. The interpretation of the PaDEL-DNN models revealed that, for a given test chemical, having several (around 5) "similar" chemicals in the training data set was crucial for accurate estimation while the remaining less similar training chemicals provided reasonable baseline estimates. Lastly, pp-LFER descriptors for over 2800 persistent, bioaccumulative, and toxic chemicals were reasonably estimated by combining PaDEL-DNN with the surrogate metric. Overall, the PaDEL-DNN/surrogate metric and newly estimated descriptors will greatly benefit chemical transfer modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Warten995完成签到,获得积分10
刚刚
刚刚
chouchou完成签到,获得积分10
1秒前
点墨完成签到 ,获得积分10
1秒前
COCO发布了新的文献求助10
2秒前
zq完成签到,获得积分20
3秒前
热心冷亦发布了新的文献求助10
4秒前
Daisy完成签到,获得积分10
4秒前
4秒前
梵莫完成签到,获得积分10
5秒前
LX发布了新的文献求助10
5秒前
庾傀斗完成签到,获得积分10
5秒前
5秒前
6秒前
CodeCraft应助guanshujuan采纳,获得10
6秒前
SciGPT应助夏天采纳,获得10
6秒前
棋士应助蓝胖子采纳,获得20
6秒前
wysy发布了新的文献求助10
6秒前
JamesPei应助zhc采纳,获得10
7秒前
7秒前
7秒前
加贝完成签到,获得积分10
7秒前
猪肉水饺发布了新的文献求助10
7秒前
我劝告了风完成签到,获得积分10
8秒前
8秒前
10秒前
司空博涛发布了新的文献求助10
10秒前
Singularity应助zzz采纳,获得10
10秒前
不爱吃饭完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
tsuki发布了新的文献求助50
12秒前
13秒前
jw完成签到,获得积分10
13秒前
彭于晏应助juice采纳,获得10
13秒前
于其言完成签到 ,获得积分10
14秒前
LZM完成签到,获得积分10
14秒前
科研废柴发布了新的文献求助20
15秒前
迷路的小蚂蚁完成签到,获得积分10
15秒前
周圈圈发布了新的文献求助10
15秒前
Duan完成签到 ,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951389
求助须知:如何正确求助?哪些是违规求助? 3496717
关于积分的说明 11084234
捐赠科研通 3227173
什么是DOI,文献DOI怎么找? 1784313
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801110