已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning inversion of Rayleigh-wave dispersion curves with geological constraints for near-surface investigations

反演(地质) 均方误差 地质学 算法 表面波 卷积神经网络 深度学习 数据集 反问题 计算机科学 地震学 人工智能 数学 数学分析 统计 构造学 电信
作者
Xinhua Chen,Jianghai Xia,Jingyin Pang,Changjiang Zhou,Binbin Mi
出处
期刊:Geophysical Journal International [Oxford University Press]
卷期号:231 (1): 1-14 被引量:16
标识
DOI:10.1093/gji/ggac171
摘要

SUMMARY With the emergence of massive seismic data sets, surface wave methods using deep learning (DL) can effectively obtain shear wave velocity (Vs) structure for non-invasive near-surface investigations. Previous studies on DL inversion for deep geophysical investigation have a reference model to generate the training data set, while near-surface investigations have no model. Therefore, we systematically give a set of training data set generation processes. In the process, we use both prior information and the observed data to constrain the data set so that the DL inversion model can learn the local geological characteristics of the survey area. Because the space of inverted Vs models is constrained and thus narrowed, the inversion non-uniqueness can be reduced. Furthermore, the mean squared error, which is commonly used as loss function, may cause a poor fitting accuracy of phase velocities at high frequencies in near-surface applications. To make the fitting accuracy evenly in all frequency bands, we modify the loss function into a weighted mean squared relative error. We designed a convolutional neural network (CNN) to directly invert fundamental-mode Rayleigh-wave phase velocity for 1-D Vs models. To verify the feasibility and reliability of the proposed algorithm, we tested and compared it with the Levenberg–Marquardt (L-M) inversion and neighbourhood algorithm (NA) using field data from the Lawrence experiment (USA) and the Wuwei experiment (China). In both experiments, the inverted Vs models by CNN are consistent with the borehole information and are similar to that from existing methods after fine tuning of model parameters. The average root mean squares errors (RMSEs) of the CNN, NA and L-M methods are also similar, except in the Lawrence experiment, the RMSE of CNN is 17.33 m s−1 lower than previous studies using the L-M method. Moreover, the comparison of different loss functions for the Wuwei experiment indicates that the modified loss function can achieve higher accuracy than the traditional one. The proposed CNN is therefore ideally suited for rapid, repeated near-surface subsurface imaging and monitoring under similar geological settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Watermanlil发布了新的文献求助10
1秒前
舒服的灵安完成签到,获得积分10
1秒前
平淡的水风完成签到,获得积分10
1秒前
QGH1207完成签到,获得积分10
2秒前
李健的小迷弟应助zzzjh采纳,获得10
5秒前
lirongcas发布了新的文献求助10
6秒前
小囡同学完成签到,获得积分10
6秒前
阿娟儿完成签到,获得积分10
6秒前
7秒前
科研通AI6.1应助ZSH采纳,获得10
7秒前
8秒前
朱广能发布了新的文献求助10
9秒前
flls完成签到,获得积分10
10秒前
10秒前
科研通AI6.1应助正直寄云采纳,获得10
11秒前
lele完成签到,获得积分10
12秒前
林天翼发布了新的文献求助10
12秒前
JamesPei应助JX采纳,获得10
13秒前
15秒前
15秒前
16秒前
16秒前
flls发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
20秒前
复杂之桃完成签到,获得积分10
21秒前
21秒前
vinwwy发布了新的文献求助50
21秒前
英俊的铭应助林天翼采纳,获得10
22秒前
勤恳雅莉发布了新的文献求助80
22秒前
23秒前
Watermanlil完成签到,获得积分10
23秒前
桐桐应助jj采纳,获得10
23秒前
WYDNBDX2013发布了新的文献求助10
23秒前
深情安青应助畅销款采纳,获得10
24秒前
丘比特应助今夜无人入眠采纳,获得10
24秒前
隐形曼青应助断罪残影采纳,获得10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5814876
求助须知:如何正确求助?哪些是违规求助? 5921129
关于积分的说明 15541512
捐赠科研通 4937673
什么是DOI,文献DOI怎么找? 2659246
邀请新用户注册赠送积分活动 1605596
关于科研通互助平台的介绍 1560155