Online Ground Multitarget Geolocation Based on 3-D Map Construction Using a UAV Platform

地理定位 计算机科学 全球定位系统 人工智能 计算机视觉 稳健性(进化) 遥感 航空影像 基本事实 地理坐标系 地理 图像(数学) 地图学 电信 基因 万维网 化学 生物化学
作者
Fangbing Zhang,Tao Yang,Yi Bai,Yajia Ning,Ye Li,Jinghui Fan,Dongdong Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:8
标识
DOI:10.1109/tgrs.2022.3168266
摘要

Geolocating multiple targets of interest on the ground from an aerial platform is an important activity in many applications, such as visual surveillance. However, due to the limited measurement accuracy of commonly used airborne sensors (including altimeters, accelerometer, gyroscopes, and so on) and the small size, complex motion, and a large number of ground targets in aerial images, most of the current unmanned aerial vehicle (UAV)-based ground target geolocation algorithms have difficulty in obtaining accurate geographic location coordinates online, especially at middle and high altitudes. To solve these problems, in this article, a novel online ground multitarget geolocation framework using a UAV platform is proposed, which minimizes the introduction of sensor error sources and uses only monocular aerial image sequences and global positioning system (GPS) data to perform parallel processing of target detection and rapid 3-D sparse geographic map construction and target geographic location estimations, thereby improving the accuracy and speed of ground multitarget online geolocation. In this framework, a detection algorithm based on deep learning is first adopted to improve the accuracy and robustness of small target detection in aerial images by constructing an aerial image dataset. Then, we propose a novel target geolocation algorithm based on 3-D map construction, which combines continuous images and GPS data collected online using a UAV platform to generate a 3-D geographic map and accurately estimates the GPS location of the target center pixel through projection and triangulation of the map points on the image. Finally, we design a data transmission architecture that selects multiple processes to perform image acquisition, target detection, and target geolocation tasks in parallel and utilizes database communication between the processes to achieve accurate online geolocation of ground targets in aerial images, regardless of whether the target is in a static or moving state. To evaluate the effectiveness of the proposed framework, we build an online ground multitarget geolocation system using a quad-rotor UAV and carry out a large number of experiments in simulations and real environments. Qualitative and quantitative experimental results proved that the framework can accurately locate ground targets in various complex environments, such as parks, highways, schools, cities, different flight altitudes (50–2000 m), and different attitude angles, and the average positioning error is approximately 1 m at 2000 m for cities with rich 3-D structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
li完成签到 ,获得积分10
刚刚
fpy发布了新的文献求助10
刚刚
火云完成签到,获得积分10
1秒前
2秒前
Ysheng完成签到,获得积分10
2秒前
lty发布了新的文献求助10
2秒前
芥末完成签到,获得积分10
3秒前
活力元龙发布了新的文献求助10
3秒前
彭于晏应助飞儿采纳,获得10
4秒前
一定可以完成签到,获得积分10
5秒前
傲娇的咖啡豆完成签到,获得积分10
5秒前
singlestrand发布了新的文献求助20
5秒前
文艺的白开水完成签到,获得积分10
6秒前
单纯访枫完成签到 ,获得积分10
6秒前
凉面完成签到 ,获得积分10
6秒前
天暗星发布了新的文献求助30
6秒前
爬得飞快的仲文博完成签到,获得积分10
6秒前
聂学雨发布了新的文献求助10
7秒前
7秒前
7秒前
晚风挽清欢完成签到,获得积分10
7秒前
无奈素发布了新的文献求助10
8秒前
Clarence完成签到,获得积分20
8秒前
香蕉觅云应助沈客卿采纳,获得10
8秒前
mozhizhi完成签到,获得积分10
9秒前
呆萌的冰姬完成签到 ,获得积分10
9秒前
111发布了新的文献求助10
9秒前
刘大可完成签到,获得积分10
9秒前
阿斯顿风格完成签到,获得积分10
10秒前
10秒前
JamesPei应助柠檬要加冰采纳,获得10
10秒前
白小白完成签到,获得积分10
11秒前
12秒前
陈陈陈发布了新的文献求助10
12秒前
13秒前
14秒前
白小白发布了新的文献求助10
14秒前
大林子发布了新的文献求助10
14秒前
111111完成签到 ,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134302
求助须知:如何正确求助?哪些是违规求助? 2785212
关于积分的说明 7770748
捐赠科研通 2440808
什么是DOI,文献DOI怎么找? 1297536
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792