已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Static and Dynamic Isolated Indian and Russian Sign Language Recognition with Spatial and Temporal Feature Detection Using Hybrid Neural Network

计算机科学 手语 特征提取 手势 人工智能 特征(语言学) 模式识别(心理学) 卷积神经网络 手势识别 分割 语音识别 计算机视觉 哲学 语言学
作者
E. Rajalakshmi,R Elakkiya,Alexey Prikhodko,Mikhail G. Grif,Maxim Bakaev,Jatinderkumar R. Saini,Ketan Kotecha,V. Subramaniyaswamy
出处
期刊:ACM Transactions on Asian and Low-Resource Language Information Processing 卷期号:22 (1): 1-23 被引量:28
标识
DOI:10.1145/3530989
摘要

The Sign Language Recognition system intends to recognize the Sign language used by the hearing and vocally impaired populace. The interpretation of isolated sign language from static and dynamic gestures is a difficult study field in machine vision. Managing quick hand movement, facial expression, illumination variations, signer variation, and background complexity are amongst the most serious challenges in this arena. While deep learning-based models have been used to accomplish the entirety of the field's state-of-the-art outcomes, the previous issues have not been fully addressed. To overcome these issues, we propose a Hybrid Neural Network Architecture for the recognition of Isolated Indian and Russian Sign Language. In the case of static gesture recognition, the proposed framework deals with the 3D Convolution Net with an atrous convolution mechanism for spatial feature extraction. For dynamic gesture recognition, the proposed framework is an integration of semantic spatial multi-cue feature detection, extraction, and Temporal-Sequential feature extraction. The semantic spatial multi-cue feature detection and extraction module help in the generation of feature maps for Full-frame, pose, face, and hand. For face and hand detection, GradCam and Camshift algorithm have been used. The temporal and sequential module consists of a modified auto-encoder with a GELU activation function for abstract high-level feature extraction and a hybrid attention layer. The hybrid attention layer is an integration of segmentation and spatial attention mechanism. The proposed work also involves creating a novel multi-signer, single, and double-handed Isolated Sign representation dataset for Indian and Russian Sign Language. The experimentation was done on the novel dataset created. The accuracy obtained for Static Isolated Sign Recognition was 99.76%, and the accuracy obtained for Dynamic Isolated Sign Recognition was 99.85%. We have also compared the performance of our proposed work with other baseline models with benchmark datasets, and our proposed work proved to have better performance in terms of Accuracy metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
所所应助追寻雨安采纳,获得10
3秒前
桂花发布了新的文献求助10
4秒前
5秒前
annice发布了新的文献求助10
7秒前
乐乐完成签到,获得积分10
11秒前
11秒前
脑洞疼应助Muhammad采纳,获得10
11秒前
乐乐应助Muhammad采纳,获得10
11秒前
CipherSage应助Muhammad采纳,获得10
11秒前
天天快乐应助Muhammad采纳,获得10
11秒前
搜集达人应助Muhammad采纳,获得10
11秒前
科研通AI2S应助Muhammad采纳,获得10
11秒前
李健的小迷弟应助Muhammad采纳,获得10
11秒前
可爱的函函应助Muhammad采纳,获得10
11秒前
在水一方应助Muhammad采纳,获得10
11秒前
大个应助Muhammad采纳,获得10
11秒前
Zion完成签到,获得积分0
15秒前
小嘎完成签到 ,获得积分10
16秒前
Leiale完成签到,获得积分10
16秒前
Emily完成签到,获得积分10
16秒前
乐乐发布了新的文献求助10
17秒前
思源应助复杂曼梅采纳,获得10
20秒前
cc123完成签到,获得积分10
20秒前
20秒前
万能图书馆应助忘多采纳,获得10
23秒前
张行完成签到,获得积分10
25秒前
噜噜脸子发布了新的文献求助10
27秒前
牛牛牛刘完成签到 ,获得积分10
30秒前
Owen应助janeeeeeee采纳,获得10
31秒前
31秒前
123完成签到,获得积分10
32秒前
忘多发布了新的文献求助10
35秒前
简行完成签到 ,获得积分10
36秒前
123发布了新的文献求助10
37秒前
45秒前
49秒前
龙卡烧烤店完成签到,获得积分10
49秒前
Orange应助乐乐采纳,获得10
50秒前
HEROTREE完成签到 ,获得积分10
51秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466733
求助须知:如何正确求助?哪些是违规求助? 3059521
关于积分的说明 9066830
捐赠科研通 2750012
什么是DOI,文献DOI怎么找? 1508876
科研通“疑难数据库(出版商)”最低求助积分说明 697115
邀请新用户注册赠送积分活动 696896