A Hybrid Prediction Model Integrating GARCH Models With a Distribution Manipulation Strategy Based on LSTM Networks for Stock Market Volatility

波动性(金融) ARCH模型 计算机科学 人工神经网络 均方误差 股票市场 计量经济学 人工智能 数学 统计 生物 古生物学
作者
Eunho Koo,Geonwoo Kim
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 34743-34754 被引量:33
标识
DOI:10.1109/access.2022.3163723
摘要

Accurate prediction of volatility is one of the most important tasks in financial decision making. Recently, the hybrid models integrating artificial neural networks with GARCH-type models have been developed, and performance gains from the models have been found to be outstanding. However, there have been few studies of hybrid models considering the nature of the distribution of financial data. Distribution of volatility time-series is highly concentrated near zero, and such aspect can cause low prediction performance on the whole domain of probability density function because weights in the networks can be trained to obtain accurate prediction only for the high frequency region, that is, near zero. To overcome the challenge, we propose a new hybrid model with GARCH-type models based on a novel non-linear filtering method to mitigate concentration property of volatility. For the filtering, we utilize root-type functions that transform extremely left-biased and pointed distribution of original volatility to a volume-upped (VU) distribution shifted to the right. Long short-term memory (LSTM) is employed as the basic implementation model, and the realized volatility of S&P 500 is predicted using the proposed models. It is found that the proposed hybrid model (VU-GARCH-LSTM) obtains 21.03% performance gain with respect to the root mean square error (RMSE) against the mean performances of the existing hybrid models integrating LSTM with GARCH-type models. Furthermore, the proposed model improves prediction performance in the right domain region of label probability density by making the prediction distribution comparable to the label distribution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zyy发布了新的文献求助10
1秒前
要开心吖发布了新的文献求助10
1秒前
許能完成签到,获得积分10
1秒前
偏i意气用事完成签到,获得积分10
2秒前
文艺雪糕完成签到,获得积分10
3秒前
寒冷的世界完成签到 ,获得积分10
3秒前
李思发布了新的文献求助10
3秒前
丘比特应助光亮友安采纳,获得10
4秒前
4秒前
阿宝完成签到,获得积分10
4秒前
111发布了新的文献求助10
4秒前
5秒前
hzhang01发布了新的文献求助10
5秒前
tanwenbin完成签到,获得积分20
5秒前
一条大河完成签到,获得积分10
5秒前
12ocky完成签到,获得积分20
6秒前
阿宝发布了新的文献求助10
6秒前
所所应助聪明的手链采纳,获得10
7秒前
7秒前
ashi发布了新的文献求助10
8秒前
我是老大应助zoe666采纳,获得30
8秒前
成就的奇异果完成签到 ,获得积分10
9秒前
逍遥小书生完成签到 ,获得积分10
9秒前
丘比特应助成就的沛菡采纳,获得10
9秒前
10秒前
一条大河发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
lydy1993完成签到,获得积分10
12秒前
12秒前
深情安青应助长情钥匙采纳,获得10
13秒前
anderson1738发布了新的文献求助10
13秒前
李加威发布了新的文献求助10
13秒前
hky完成签到 ,获得积分10
13秒前
HHH完成签到,获得积分10
14秒前
嘻嘻嘻发布了新的文献求助10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144703
求助须知:如何正确求助?哪些是违规求助? 2796148
关于积分的说明 7818215
捐赠科研通 2452316
什么是DOI,文献DOI怎么找? 1304935
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449