A Hybrid Prediction Model Integrating GARCH Models With a Distribution Manipulation Strategy Based on LSTM Networks for Stock Market Volatility

波动性(金融) ARCH模型 计算机科学 人工神经网络 均方误差 股票市场 计量经济学 人工智能 数学 统计 生物 古生物学
作者
Eunho Koo,Geonwoo Kim
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 34743-34754 被引量:33
标识
DOI:10.1109/access.2022.3163723
摘要

Accurate prediction of volatility is one of the most important tasks in financial decision making. Recently, the hybrid models integrating artificial neural networks with GARCH-type models have been developed, and performance gains from the models have been found to be outstanding. However, there have been few studies of hybrid models considering the nature of the distribution of financial data. Distribution of volatility time-series is highly concentrated near zero, and such aspect can cause low prediction performance on the whole domain of probability density function because weights in the networks can be trained to obtain accurate prediction only for the high frequency region, that is, near zero. To overcome the challenge, we propose a new hybrid model with GARCH-type models based on a novel non-linear filtering method to mitigate concentration property of volatility. For the filtering, we utilize root-type functions that transform extremely left-biased and pointed distribution of original volatility to a volume-upped (VU) distribution shifted to the right. Long short-term memory (LSTM) is employed as the basic implementation model, and the realized volatility of S&P 500 is predicted using the proposed models. It is found that the proposed hybrid model (VU-GARCH-LSTM) obtains 21.03% performance gain with respect to the root mean square error (RMSE) against the mean performances of the existing hybrid models integrating LSTM with GARCH-type models. Furthermore, the proposed model improves prediction performance in the right domain region of label probability density by making the prediction distribution comparable to the label distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LSH970829完成签到,获得积分10
1秒前
Lyg完成签到,获得积分20
2秒前
坚强的樱发布了新的文献求助10
2秒前
baodingning完成签到,获得积分10
3秒前
3秒前
公茂源发布了新的文献求助30
3秒前
热爱完成签到,获得积分10
4秒前
5秒前
叫滚滚发布了新的文献求助10
6秒前
星瑆心完成签到,获得积分10
6秒前
啦啦啦啦啦完成签到,获得积分10
7秒前
Lyg发布了新的文献求助10
7秒前
Dksido完成签到,获得积分10
8秒前
兰博基尼奥完成签到,获得积分10
8秒前
热情芷荷发布了新的文献求助10
10秒前
random完成签到,获得积分10
11秒前
11秒前
果果瑞宁完成签到,获得积分10
11秒前
12秒前
机智小虾米完成签到,获得积分20
12秒前
goldenfleece完成签到,获得积分10
13秒前
科研通AI2S应助学者采纳,获得10
13秒前
小杨完成签到,获得积分10
14秒前
sutharsons应助科研通管家采纳,获得30
15秒前
15秒前
Ava应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得30
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得30
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
Eric_Lee2000应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808