Explainable step-wise binary classification for the susceptibility assessment of geo-hydrological hazards

山崩 危害 危害分析 环境科学 水文学(农业) 计算机科学 地质学 岩土工程 工程类 可靠性工程 化学 有机化学
作者
Ömer Ekmekcioğlu,Kerim Koc
标识
DOI:10.1016/j.catena.2022.106379
摘要

This research proposes a novel step-wise binary prediction framework for the susceptibility assessment of geo-hydrological hazards specific to floods and landslides. The framework of the study comprises two major steps: prediction of geo-hydrological hazard-prone locations (Step-1: hazard/non-hazard), and classification of geo-hydrological hazards by identifying the locations of floods and landslides separately (Step-2: floods/landslides). We used 1326 historically experienced hazard locations (i.e., 726 for floods and 690 for landslides) in the Kentucky River basin, United States, along with the 13 hazard conditioning factors. Extremely randomized trees (ERT) coupled with the particle swarm optimization (PSO) was adopted to provide an effective classification scheme. Based on the predictions of the ERT-PSO in the first step, correctly classified hazard instances were used in the second step of the prediction task to further deepen the machine learning application. The results revealed a strong agreement between the predicted and observed hazard locations with an AUROC of 0.8032 and 0.8845 for geo-hydrological hazard (Step-1) and flood/landslide classifications (Step-2), respectively. The proposed hybrid prediction framework introduced considerably accurate performance as 73.78% and 72.91% of the hazard and non-hazard classes were correctly identified at Step-1, respectively, while at Step-2, 72.31% of the flooding points and 84.85% of the landslide points were ascertained accurately. Overall findings emerged from Step-1 illustrated that nearly 10% of the entire basin is susceptible to geo-hydrological hazards with very high probability, whereas very low susceptible areas cover only 20% of the basin. A model-agnostic game-theory based SHapley Additive exPlanations (SHAP) algorithm was employed to anatomize the contribution of hazard conditioning factors on the incident outcome predictions aiding to increase the interpretability of the adopted methodology. The holistic approach adopted in the present research has significant potential in providing insights into the practical and theoretical grounds of the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lily发布了新的文献求助10
刚刚
辛勤夜安完成签到 ,获得积分10
1秒前
陆未离发布了新的文献求助10
1秒前
1秒前
2秒前
yufanhui应助小叶子采纳,获得10
2秒前
汉堡包应助xol采纳,获得10
3秒前
汉堡包应助蔬菜狗狗采纳,获得10
3秒前
4秒前
4秒前
我是老大应助成就小懒虫采纳,获得10
4秒前
哒哒哒发布了新的文献求助150
4秒前
4秒前
4秒前
4秒前
5秒前
後知後孓完成签到,获得积分10
5秒前
6秒前
6秒前
wylw完成签到,获得积分20
7秒前
赘婿应助莫氓采纳,获得10
7秒前
英俊的铭应助盛亚雯采纳,获得10
7秒前
7秒前
後知後孓发布了新的文献求助10
8秒前
Neutrino发布了新的文献求助10
8秒前
NI完成签到,获得积分10
8秒前
壹元侑子发布了新的文献求助10
8秒前
CML完成签到,获得积分10
9秒前
FashionBoy应助大卫采纳,获得10
9秒前
10秒前
Lyj123发布了新的文献求助30
10秒前
爱因斯坦小哲完成签到,获得积分10
10秒前
斯李iko发布了新的文献求助10
11秒前
辛夷发布了新的文献求助10
11秒前
coconut发布了新的文献求助10
12秒前
12秒前
彭于晏应助wylw采纳,获得10
13秒前
chenxin7271发布了新的文献求助10
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123951
求助须知:如何正确求助?哪些是违规求助? 2774359
关于积分的说明 7722160
捐赠科研通 2429940
什么是DOI,文献DOI怎么找? 1290751
科研通“疑难数据库(出版商)”最低求助积分说明 621911
版权声明 600283