亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explainable step-wise binary classification for the susceptibility assessment of geo-hydrological hazards

山崩 危害 危害分析 环境科学 水文学(农业) 计算机科学 地质学 岩土工程 工程类 可靠性工程 有机化学 化学
作者
Ömer Ekmekcioğlu,Kerim Koc
标识
DOI:10.1016/j.catena.2022.106379
摘要

This research proposes a novel step-wise binary prediction framework for the susceptibility assessment of geo-hydrological hazards specific to floods and landslides. The framework of the study comprises two major steps: prediction of geo-hydrological hazard-prone locations (Step-1: hazard/non-hazard), and classification of geo-hydrological hazards by identifying the locations of floods and landslides separately (Step-2: floods/landslides). We used 1326 historically experienced hazard locations (i.e., 726 for floods and 690 for landslides) in the Kentucky River basin, United States, along with the 13 hazard conditioning factors. Extremely randomized trees (ERT) coupled with the particle swarm optimization (PSO) was adopted to provide an effective classification scheme. Based on the predictions of the ERT-PSO in the first step, correctly classified hazard instances were used in the second step of the prediction task to further deepen the machine learning application. The results revealed a strong agreement between the predicted and observed hazard locations with an AUROC of 0.8032 and 0.8845 for geo-hydrological hazard (Step-1) and flood/landslide classifications (Step-2), respectively. The proposed hybrid prediction framework introduced considerably accurate performance as 73.78% and 72.91% of the hazard and non-hazard classes were correctly identified at Step-1, respectively, while at Step-2, 72.31% of the flooding points and 84.85% of the landslide points were ascertained accurately. Overall findings emerged from Step-1 illustrated that nearly 10% of the entire basin is susceptible to geo-hydrological hazards with very high probability, whereas very low susceptible areas cover only 20% of the basin. A model-agnostic game-theory based SHapley Additive exPlanations (SHAP) algorithm was employed to anatomize the contribution of hazard conditioning factors on the incident outcome predictions aiding to increase the interpretability of the adopted methodology. The holistic approach adopted in the present research has significant potential in providing insights into the practical and theoretical grounds of the literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜗牛完成签到,获得积分20
3秒前
3秒前
于富强发布了新的文献求助10
21秒前
Akim应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
清飏应助科研通管家采纳,获得10
23秒前
阿布应助科研通管家采纳,获得10
23秒前
jy发布了新的文献求助10
24秒前
摸鱼大王完成签到 ,获得积分10
25秒前
Tendency完成签到 ,获得积分10
27秒前
27秒前
28秒前
jy完成签到,获得积分10
33秒前
大模型应助吉吉急急急采纳,获得10
39秒前
41秒前
UU完成签到,获得积分10
44秒前
调皮醉波完成签到 ,获得积分10
48秒前
Jamesliu完成签到,获得积分10
48秒前
闪闪的晓丝完成签到 ,获得积分10
49秒前
neao完成签到 ,获得积分10
52秒前
59秒前
哩哩完成签到 ,获得积分10
1分钟前
zpmz完成签到 ,获得积分10
1分钟前
Criminology34举报11求助涉嫌违规
1分钟前
1分钟前
dywen完成签到,获得积分10
1分钟前
科研q完成签到 ,获得积分10
1分钟前
DrW完成签到,获得积分10
1分钟前
Jason完成签到 ,获得积分10
1分钟前
陈陈完成签到 ,获得积分20
1分钟前
1分钟前
Jasper应助秋浱采纳,获得10
1分钟前
英姑应助王小帅ok采纳,获得10
1分钟前
1分钟前
自由念露完成签到 ,获得积分10
1分钟前
1分钟前
ding应助忧心的迎天采纳,获得10
2分钟前
王小帅ok发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634505
求助须知:如何正确求助?哪些是违规求助? 4731494
关于积分的说明 14988674
捐赠科研通 4792284
什么是DOI,文献DOI怎么找? 2559447
邀请新用户注册赠送积分活动 1519756
关于科研通互助平台的介绍 1479875