已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Explainable step-wise binary classification for the susceptibility assessment of geo-hydrological hazards

山崩 危害 危害分析 环境科学 水文学(农业) 计算机科学 地质学 岩土工程 工程类 可靠性工程 有机化学 化学
作者
Ömer Ekmekcioğlu,Kerim Koc
标识
DOI:10.1016/j.catena.2022.106379
摘要

This research proposes a novel step-wise binary prediction framework for the susceptibility assessment of geo-hydrological hazards specific to floods and landslides. The framework of the study comprises two major steps: prediction of geo-hydrological hazard-prone locations (Step-1: hazard/non-hazard), and classification of geo-hydrological hazards by identifying the locations of floods and landslides separately (Step-2: floods/landslides). We used 1326 historically experienced hazard locations (i.e., 726 for floods and 690 for landslides) in the Kentucky River basin, United States, along with the 13 hazard conditioning factors. Extremely randomized trees (ERT) coupled with the particle swarm optimization (PSO) was adopted to provide an effective classification scheme. Based on the predictions of the ERT-PSO in the first step, correctly classified hazard instances were used in the second step of the prediction task to further deepen the machine learning application. The results revealed a strong agreement between the predicted and observed hazard locations with an AUROC of 0.8032 and 0.8845 for geo-hydrological hazard (Step-1) and flood/landslide classifications (Step-2), respectively. The proposed hybrid prediction framework introduced considerably accurate performance as 73.78% and 72.91% of the hazard and non-hazard classes were correctly identified at Step-1, respectively, while at Step-2, 72.31% of the flooding points and 84.85% of the landslide points were ascertained accurately. Overall findings emerged from Step-1 illustrated that nearly 10% of the entire basin is susceptible to geo-hydrological hazards with very high probability, whereas very low susceptible areas cover only 20% of the basin. A model-agnostic game-theory based SHapley Additive exPlanations (SHAP) algorithm was employed to anatomize the contribution of hazard conditioning factors on the incident outcome predictions aiding to increase the interpretability of the adopted methodology. The holistic approach adopted in the present research has significant potential in providing insights into the practical and theoretical grounds of the literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
电池呦发布了新的文献求助10
刚刚
斯文冷亦完成签到 ,获得积分10
2秒前
zy发布了新的文献求助10
3秒前
小蘑菇应助张志超采纳,获得10
4秒前
无语的巨人完成签到 ,获得积分10
4秒前
Tonson完成签到,获得积分10
5秒前
楚楚完成签到 ,获得积分10
6秒前
走啊走完成签到,获得积分10
7秒前
8秒前
懒得理完成签到 ,获得积分10
9秒前
9秒前
荔枝完成签到,获得积分10
10秒前
Ripples完成签到,获得积分10
10秒前
呜哩哇啦发布了新的文献求助10
12秒前
盐焗小崔发布了新的文献求助10
13秒前
浮浮世世发布了新的文献求助10
17秒前
舒心小海豚完成签到 ,获得积分10
18秒前
21秒前
kdjc完成签到 ,获得积分10
22秒前
Ava应助盐焗小崔采纳,获得10
22秒前
24秒前
zwd完成签到 ,获得积分10
26秒前
江城一霸完成签到,获得积分10
28秒前
29秒前
殷琛发布了新的文献求助10
29秒前
30秒前
快乐小王完成签到,获得积分10
31秒前
Ricardo完成签到 ,获得积分10
34秒前
李健的小迷弟应助Moweikang采纳,获得10
36秒前
科研通AI6应助Cmax_采纳,获得10
37秒前
Lucas应助殷琛采纳,获得10
38秒前
38秒前
电池呦完成签到 ,获得积分10
38秒前
领导范儿应助翟不评采纳,获得10
40秒前
41秒前
Erren完成签到 ,获得积分10
41秒前
NexusExplorer应助称心的语梦采纳,获得10
43秒前
43秒前
吴大王发布了新的文献求助10
46秒前
null应助抱抱龙采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627676
求助须知:如何正确求助?哪些是违规求助? 4714380
关于积分的说明 14962946
捐赠科研通 4785322
什么是DOI,文献DOI怎么找? 2555072
邀请新用户注册赠送积分活动 1516447
关于科研通互助平台的介绍 1476841