Explainable step-wise binary classification for the susceptibility assessment of geo-hydrological hazards

山崩 危害 危害分析 环境科学 水文学(农业) 计算机科学 地质学 岩土工程 工程类 可靠性工程 有机化学 化学
作者
Ömer Ekmekcioğlu,Kerim Koc
标识
DOI:10.1016/j.catena.2022.106379
摘要

This research proposes a novel step-wise binary prediction framework for the susceptibility assessment of geo-hydrological hazards specific to floods and landslides. The framework of the study comprises two major steps: prediction of geo-hydrological hazard-prone locations (Step-1: hazard/non-hazard), and classification of geo-hydrological hazards by identifying the locations of floods and landslides separately (Step-2: floods/landslides). We used 1326 historically experienced hazard locations (i.e., 726 for floods and 690 for landslides) in the Kentucky River basin, United States, along with the 13 hazard conditioning factors. Extremely randomized trees (ERT) coupled with the particle swarm optimization (PSO) was adopted to provide an effective classification scheme. Based on the predictions of the ERT-PSO in the first step, correctly classified hazard instances were used in the second step of the prediction task to further deepen the machine learning application. The results revealed a strong agreement between the predicted and observed hazard locations with an AUROC of 0.8032 and 0.8845 for geo-hydrological hazard (Step-1) and flood/landslide classifications (Step-2), respectively. The proposed hybrid prediction framework introduced considerably accurate performance as 73.78% and 72.91% of the hazard and non-hazard classes were correctly identified at Step-1, respectively, while at Step-2, 72.31% of the flooding points and 84.85% of the landslide points were ascertained accurately. Overall findings emerged from Step-1 illustrated that nearly 10% of the entire basin is susceptible to geo-hydrological hazards with very high probability, whereas very low susceptible areas cover only 20% of the basin. A model-agnostic game-theory based SHapley Additive exPlanations (SHAP) algorithm was employed to anatomize the contribution of hazard conditioning factors on the incident outcome predictions aiding to increase the interpretability of the adopted methodology. The holistic approach adopted in the present research has significant potential in providing insights into the practical and theoretical grounds of the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
属虎的华安完成签到,获得积分10
刚刚
刚刚
神明发布了新的文献求助10
刚刚
宋晓静发布了新的文献求助10
1秒前
光亮的傲白完成签到,获得积分10
1秒前
传奇3应助liufumei采纳,获得10
2秒前
hhhh完成签到 ,获得积分10
2秒前
2秒前
王小嘻完成签到,获得积分10
2秒前
吱吱完成签到,获得积分10
2秒前
123完成签到,获得积分10
2秒前
2秒前
田様应助sugar采纳,获得10
3秒前
3秒前
uui完成签到,获得积分10
3秒前
QYR完成签到,获得积分10
4秒前
4秒前
4秒前
古德day完成签到,获得积分10
4秒前
热心市民小红花完成签到,获得积分0
5秒前
小蘑菇应助神明采纳,获得10
5秒前
huihui完成签到 ,获得积分10
5秒前
5秒前
chenjian完成签到,获得积分10
5秒前
Tourist应助粗犷的宫苴采纳,获得50
6秒前
吱吱发布了新的文献求助10
7秒前
believe完成签到,获得积分10
7秒前
酷波er应助xu采纳,获得10
7秒前
冷静新烟发布了新的文献求助10
8秒前
8秒前
8秒前
艳阳天发布了新的文献求助10
8秒前
小熊完成签到,获得积分10
8秒前
合适的鼠标完成签到,获得积分10
8秒前
8秒前
llllll完成签到 ,获得积分10
9秒前
shusz完成签到,获得积分10
9秒前
夏堇完成签到,获得积分10
9秒前
FashionBoy应助sdl采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950365
求助须知:如何正确求助?哪些是违规求助? 3495846
关于积分的说明 11078987
捐赠科研通 3226245
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800926