亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explainable step-wise binary classification for the susceptibility assessment of geo-hydrological hazards

山崩 危害 危害分析 环境科学 水文学(农业) 计算机科学 地质学 岩土工程 工程类 可靠性工程 有机化学 化学
作者
Ömer Ekmekcioğlu,Kerim Koc
标识
DOI:10.1016/j.catena.2022.106379
摘要

This research proposes a novel step-wise binary prediction framework for the susceptibility assessment of geo-hydrological hazards specific to floods and landslides. The framework of the study comprises two major steps: prediction of geo-hydrological hazard-prone locations (Step-1: hazard/non-hazard), and classification of geo-hydrological hazards by identifying the locations of floods and landslides separately (Step-2: floods/landslides). We used 1326 historically experienced hazard locations (i.e., 726 for floods and 690 for landslides) in the Kentucky River basin, United States, along with the 13 hazard conditioning factors. Extremely randomized trees (ERT) coupled with the particle swarm optimization (PSO) was adopted to provide an effective classification scheme. Based on the predictions of the ERT-PSO in the first step, correctly classified hazard instances were used in the second step of the prediction task to further deepen the machine learning application. The results revealed a strong agreement between the predicted and observed hazard locations with an AUROC of 0.8032 and 0.8845 for geo-hydrological hazard (Step-1) and flood/landslide classifications (Step-2), respectively. The proposed hybrid prediction framework introduced considerably accurate performance as 73.78% and 72.91% of the hazard and non-hazard classes were correctly identified at Step-1, respectively, while at Step-2, 72.31% of the flooding points and 84.85% of the landslide points were ascertained accurately. Overall findings emerged from Step-1 illustrated that nearly 10% of the entire basin is susceptible to geo-hydrological hazards with very high probability, whereas very low susceptible areas cover only 20% of the basin. A model-agnostic game-theory based SHapley Additive exPlanations (SHAP) algorithm was employed to anatomize the contribution of hazard conditioning factors on the incident outcome predictions aiding to increase the interpretability of the adopted methodology. The holistic approach adopted in the present research has significant potential in providing insights into the practical and theoretical grounds of the literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hillson完成签到,获得积分10
11秒前
淡淡菠萝完成签到 ,获得积分10
14秒前
39秒前
40秒前
嘟嘟嘟嘟发布了新的文献求助10
42秒前
善学以致用应助调皮千兰采纳,获得10
44秒前
1分钟前
调皮千兰发布了新的文献求助10
1分钟前
BowieHuang应助沉默的倔驴采纳,获得10
1分钟前
BowieHuang应助沉默的倔驴采纳,获得10
1分钟前
Hello应助沉默的倔驴采纳,获得10
1分钟前
科研通AI6应助调皮千兰采纳,获得10
1分钟前
田様应助at采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
江姜酱先生完成签到,获得积分10
2分钟前
2分钟前
冷酷的寒天完成签到,获得积分10
2分钟前
3分钟前
3分钟前
香蕉觅云应助冷酷的寒天采纳,获得10
3分钟前
3分钟前
sunfield2014发布了新的文献求助30
3分钟前
调皮千兰发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
凯旋预言完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
帮帮忙大佬x_x呜呜完成签到,获得积分10
5分钟前
6分钟前
wangfaqing942完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561486
求助须知:如何正确求助?哪些是违规求助? 4646588
关于积分的说明 14678693
捐赠科研通 4587873
什么是DOI,文献DOI怎么找? 2517244
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461520