已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

In-situ peptization of WO3 in alkaline SnO2 colloid for stable perovskite solar cells with record fill-factor approaching the shockley–queisser limit

材料科学 钝化 胶体 化学工程 纳米晶 钙钛矿(结构) 纳米技术 光电子学 图层(电子) 工程类
作者
Zicheng Li,Can Wang,Ping‐Ping Sun,Zhihao Zhang,Qin Zhou,Yitian Du,Jianbin Xu,Yibo Chen,Qiu Xiong,Liming Ding,Mohammad Khaja Nazeeruddin,Peng Gao
出处
期刊:Nano Energy [Elsevier]
卷期号:100: 107468-107468 被引量:49
标识
DOI:10.1016/j.nanoen.2022.107468
摘要

SnO2-based electron transport layers (ETLs) offer outstanding band alignment, excellent chemical and UV stability, high transmittance, high conductivity, and processability at low temperatures. However, unfortunately, the state-of-the-art SnO2 colloid precursor suffered from agglomeration over time and structural defects such as dangling hydroxyl groups and oxygen vacancies, which deteriorate both the morphology and electronic quality of the resulting ETL. Especially, these trap states near the valence band can hinder charge extraction and transport of electrons to couple with non-radiative recombination loss. Here, we introduce a novel WO3 @SnO2 nanocomposite ETL, which is synthesized by in situ peptizations of WO3 in commercial alkaline SnO2 colloid nanocrystals. The hydrated (peptized) WO3 forms H2WO4 (WO42-) to effectively stabilize the SnO2 nanocrystals in the dispersion and bind to the defect sites. Intriguingly, the H2WO4 converts back to the WO3 phase to form nano-heterostructured composite with SnO2 particles during the process of film fabrication, further promoting passivation and charge extraction. Through the novel method, we could achieve molecular level passivation of SnO2 layer by WO3, and a power conversion efficiency of 23.6% for a 0.1 cm2 PSC device with ultra-high FF of 85.8% was demonstrated. Furthermore, a modified detailed balance model was used to verify the drastically lessened surface & bulk defect-induced recombination loss in WO3 @SnO2 based devices. Finally, the corresponding unencapsulated cell retained ~91% of its initial efficiency after 2000 h of damp exposure. This work provides a promising method to access the Shockley–Queisser limit of fill factor for single-junction PSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvsehx发布了新的文献求助10
2秒前
2秒前
panpan发布了新的文献求助10
3秒前
3秒前
tian完成签到 ,获得积分10
3秒前
3秒前
LSJ发布了新的文献求助10
9秒前
www发布了新的文献求助10
9秒前
善学以致用应助闾丘惜萱采纳,获得10
10秒前
神秘玩家完成签到 ,获得积分10
13秒前
爱笑的朋友完成签到,获得积分10
14秒前
林兰特完成签到,获得积分10
14秒前
panpan完成签到,获得积分20
16秒前
19秒前
19秒前
21秒前
21秒前
脑洞疼应助haiLLL7采纳,获得10
22秒前
23秒前
猪猪侠发布了新的文献求助10
25秒前
闾丘惜萱发布了新的文献求助10
26秒前
夏筱应助SDS采纳,获得10
26秒前
sciN完成签到 ,获得积分10
27秒前
多金完成签到,获得积分10
29秒前
www完成签到,获得积分10
30秒前
缓慢如南应助www采纳,获得10
30秒前
32秒前
35秒前
欣喜眼神完成签到,获得积分20
36秒前
欣喜眼神发布了新的文献求助10
38秒前
zz关注了科研通微信公众号
41秒前
42秒前
SYLH应助科研通管家采纳,获得10
43秒前
搜集达人应助科研通管家采纳,获得30
43秒前
华仔应助科研通管家采纳,获得10
43秒前
SYLH应助科研通管家采纳,获得10
43秒前
SYLH应助科研通管家采纳,获得10
43秒前
乐乐应助科研通管家采纳,获得10
43秒前
乐乐应助科研通管家采纳,获得10
43秒前
Akim应助科研通管家采纳,获得10
43秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561680
求助须知:如何正确求助?哪些是违规求助? 3135271
关于积分的说明 9411778
捐赠科研通 2835787
什么是DOI,文献DOI怎么找? 1558642
邀请新用户注册赠送积分活动 728413
科研通“疑难数据库(出版商)”最低求助积分说明 716806