Deep Learning-Based Verification of Iridology in Diagnosing Type II Diabetes Mellitus

人工智能 卷积神经网络 分割 分类器(UML) 计算机科学 模式识别(心理学) 深度学习 IRIS(生物传感器) 2型糖尿病 糖尿病 医学 生物识别 内分泌学
作者
K Sruthi,J Vijayakumar,S. Thavamani
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:36 (11) 被引量:2
标识
DOI:10.1142/s0218001422520176
摘要

Type II Diabetes Mellitus (Type II DM) is a chronic condition that has detrimental effect on vital organs if left untreated, necessitating early diagnosis and treatment. Iridology, a subset of Complementary and Alternative Medicine (CAM), has the potential to serve as a tool for noninvasive early diagnosis of Type II DM. Iridology involves analyzing the characteristics of iris such as color and pattern for detection of organ and system defects. Deep learning algorithm is one of the promising methods in diagnosing various health-related issues. In this study, we have demonstrated the efficiency of iridology in diagnosing Type II DM using deep learning algorithms. Near Infra-Red images of iris were captured using iris scanner from 178 voluntary subjects belonging to two categories namely, Type II DM (95 subjects) and nondiabetic or healthy category (83 subjects). We have developed an algorithm using Fully Convolutional Neural network for effective iris segmentation. Normalized iris images were used to crop out our region of interest, pancreas, based on the iridology chart. Classification networks such as AlexNet, VGG-16, and ResNet-50 were used to classify Type II DM versus healthy category. Our proposed model for iris segmentation achieved an accuracy and sensitivity of 0.99, specificity and F-Score of 0.98, and a precision of 0.97. Results obtained using AlexNet classifier exhibits better classification accuracy of 95.85% for Zero-padding based resized image. The classifier yielded a sensitivity, specificity, and precision of 95.80%, 95.85%, and 96.11%, respectively. Our study results establish the efficacy and emphasize the importance of the proposed algorithm for diagnosing Type II DM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜安蕾关注了科研通微信公众号
刚刚
zaadasd发布了新的文献求助30
刚刚
迫切完成签到,获得积分10
刚刚
asdfghjkl完成签到,获得积分10
刚刚
1秒前
共享精神应助尹尹尹采纳,获得10
1秒前
伶俐的星月完成签到,获得积分10
1秒前
感动归尘完成签到,获得积分10
2秒前
cugwzr完成签到,获得积分10
2秒前
3秒前
拜拜拜仁完成签到,获得积分10
3秒前
九章发布了新的文献求助10
3秒前
白日梦蓝完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
牧童完成签到,获得积分10
3秒前
CrazyRichard发布了新的文献求助10
4秒前
4秒前
果粒儿完成签到 ,获得积分10
4秒前
zhaoxi完成签到,获得积分10
4秒前
5秒前
研友_Bn2AqL完成签到,获得积分10
5秒前
5秒前
zheng完成签到 ,获得积分10
6秒前
傲娇老五完成签到 ,获得积分10
6秒前
7秒前
SciGPT应助ddz采纳,获得10
7秒前
7秒前
CipherSage应助madison采纳,获得10
8秒前
8秒前
小鹿完成签到,获得积分10
8秒前
FashionBoy应助sunshine采纳,获得10
9秒前
fzhou完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助吉初瑶采纳,获得10
9秒前
后知后觉完成签到,获得积分10
9秒前
9秒前
dong驳回了所所应助
9秒前
狂野果汁发布了新的文献求助10
9秒前
10秒前
司空天磊完成签到,获得积分10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661438
求助须知:如何正确求助?哪些是违规求助? 3222458
关于积分的说明 9746040
捐赠科研通 2932102
什么是DOI,文献DOI怎么找? 1605461
邀请新用户注册赠送积分活动 757898
科研通“疑难数据库(出版商)”最低求助积分说明 734576