Machine Learning Techniques Differentiate Alcohol-Associated Hepatitis From Acute Cholangitis in Patients With Systemic Inflammation and Elevated Liver Enzymes

医学 内科学 随机森林 人工智能 机器学习 丙氨酸转氨酶 平均红细胞血红蛋白浓度 肝炎 梯度升压 特征选择 逻辑回归 胆红素 丙氨酸转氨酶 胃肠病学 平均红细胞体积 红细胞压积 计算机科学
作者
Joseph Ahn,Yung‐Kyun Noh,Puru Rattan,Seth Buryska,Tiffany Wu,Camille A. Kezer,Chansong Choi,Shivaram P. Arunachalam,Douglas A. Simonetto,Vijay H. Shah,Patrick S. Kamath
出处
期刊:Mayo Clinic Proceedings [Elsevier BV]
卷期号:97 (7): 1326-1336 被引量:9
标识
DOI:10.1016/j.mayocp.2022.01.028
摘要

Objective To develop machine learning algorithms (MLAs) that can differentiate patients with acute cholangitis (AC) and alcohol-associated hepatitis (AH) using simple laboratory variables. Methods A study was conducted of 459 adult patients admitted to Mayo Clinic, Rochester, with AH (n=265) or AC (n=194) from January 1, 2010, to December 31, 2019. Ten laboratory variables (white blood cell count, hemoglobin, mean corpuscular volume, platelet count, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin, direct bilirubin, albumin) were collected as input variables. Eight supervised MLAs (decision tree, naive Bayes, logistic regression, k-nearest neighbor, support vector machine, artificial neural networks, random forest, gradient boosting) were trained and tested for classification of AC vs AH. External validation was performed with patients with AC (n=213) and AH (n=92) from the MIMIC-III database. A feature selection strategy was used to choose the best 5-variable combination. There were 143 physicians who took an online quiz to distinguish AC from AH using the same 10 laboratory variables alone. Results The MLAs demonstrated excellent performances with accuracies up to 0.932 and area under the curve (AUC) up to 0.986. In external validation, the MLAs showed comparable accuracy up to 0.909 and AUC up to 0.970. Feature selection in terms of information-theoretic measures was effective, and the choice of the best 5-variable subset produced high performance with an AUC up to 0.994. Physicians did worse, with mean accuracy of 0.790. Conclusion Using a few routine laboratory variables, MLAs can differentiate patients with AC and AH and may serve valuable adjunctive roles in cases of diagnostic uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WIND-CUTTER完成签到,获得积分10
刚刚
甜甜的大米完成签到,获得积分10
刚刚
单身的君浩完成签到,获得积分10
1秒前
花开hhhhhhh完成签到,获得积分10
2秒前
笨笨的诗槐完成签到 ,获得积分10
2秒前
impala完成签到,获得积分10
2秒前
3秒前
3秒前
楚之杰者完成签到,获得积分10
4秒前
我不困完成签到,获得积分10
5秒前
阿呦佳完成签到,获得积分10
5秒前
俭朴新之完成签到 ,获得积分10
6秒前
HK完成签到 ,获得积分10
6秒前
Kay76完成签到,获得积分10
7秒前
淡淡的寄灵完成签到,获得积分10
8秒前
kk子完成签到,获得积分10
9秒前
123free完成签到,获得积分10
11秒前
cai完成签到 ,获得积分10
12秒前
冬月完成签到,获得积分10
12秒前
happiness完成签到,获得积分10
13秒前
bin完成签到,获得积分10
13秒前
孙友浩完成签到,获得积分10
13秒前
111完成签到,获得积分10
14秒前
14秒前
yuanletong完成签到 ,获得积分10
15秒前
在云里爱与歌完成签到,获得积分10
15秒前
稳如老狗完成签到,获得积分10
15秒前
天天向上完成签到,获得积分10
16秒前
如意蚂蚁完成签到,获得积分10
16秒前
oyfff完成签到 ,获得积分10
16秒前
雨落瑾年完成签到,获得积分10
17秒前
帅哥吴克完成签到,获得积分10
18秒前
ldy完成签到,获得积分10
18秒前
gbx完成签到,获得积分10
18秒前
芒果布丁完成签到 ,获得积分10
19秒前
甜美的青柏完成签到,获得积分10
19秒前
老哥8212完成签到,获得积分20
19秒前
QYR完成签到,获得积分10
20秒前
Tonald Yang发布了新的文献求助10
20秒前
guajiguaji完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968593
求助须知:如何正确求助?哪些是违规求助? 3513416
关于积分的说明 11167791
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794507
邀请新用户注册赠送积分活动 875170
科研通“疑难数据库(出版商)”最低求助积分说明 804671