De Novo design of potential inhibitors against SARS-CoV-2 Mpro

计算机科学 对接(动物) 药物发现 2019年冠状病毒病(COVID-19) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 计算生物学 人工智能
作者
Shimeng Li,Lianxin Wang,Jinhui Meng,Qi Zhao,Li Zhang,Hongsheng Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:: 105728-105728
标识
DOI:10.1016/j.compbiomed.2022.105728
摘要

The impact of the ravages of COVID-19 on people's lives is obvious, and the development of novel potential inhibitors against SARS-CoV-2 main protease (Mpro), which has been validated as a potential target for drug design, is urgently needed. This study developed a model named MproI-GEN, which can be used for the de novo design of potential Mpro inhibitors (MproIs) based on deep learning. The model was mainly composed of long-short term memory modules, and the last layer was re-trained with transfer learning. The validity (0.9248), novelty (0.9668), and uniqueness (0.0652) of the designed potential MproI library (PMproIL) were evaluated, and the results showed that MproI-GEN could be used to design structurally novel and reasonable molecules. Additionally, PMproIL was filtered based on machine learning models and molecular docking. After filtering, the potential MproIs were verified with molecular dynamics simulations to evaluate the binding stability levels of these MproIs and SARS-CoV-2 Mpro, thereby illustrating the inhibitory effects of the potential MproIs against Mpro. Two potential MproIs were proposed in this study. This study provides not only new possibilities for the development of COVID-19 drugs but also a complete pipeline for the discovery of novel lead compounds. • A character-level small molecules design model for MproI design is proposed. • The potential MproI libraries were filtered by Machine Learning models and molecular docking. • Two potential MproIs were designed with the MproI-GEN and validated with molecular dynamics simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Enma发布了新的文献求助10
3秒前
陈乐宁2024发布了新的文献求助10
3秒前
4秒前
狮子座发布了新的文献求助10
5秒前
儒雅台灯发布了新的文献求助10
5秒前
养猪大户完成签到 ,获得积分10
8秒前
16秒前
李健的粉丝团团长应助626采纳,获得30
17秒前
Tim发布了新的文献求助10
17秒前
17秒前
纳米大亨完成签到,获得积分10
18秒前
20秒前
FashionBoy应助纳米大亨采纳,获得10
21秒前
jansorchen完成签到,获得积分10
21秒前
22秒前
Zzzzz完成签到 ,获得积分10
22秒前
科研小风发布了新的文献求助30
22秒前
末小皮发布了新的文献求助10
22秒前
gaga完成签到,获得积分10
22秒前
23秒前
假面绅士发布了新的文献求助10
24秒前
25秒前
大胖发布了新的文献求助10
25秒前
Lynn发布了新的文献求助10
27秒前
陌上尘开完成签到 ,获得积分10
28秒前
爪爪完成签到,获得积分10
29秒前
hhhm发布了新的文献求助10
29秒前
29秒前
Jasper应助末小皮采纳,获得30
29秒前
星辰大海应助homo采纳,获得10
32秒前
小小完成签到 ,获得积分10
32秒前
瘦瘦万怨发布了新的文献求助20
33秒前
34秒前
SciGPT应助科研小风采纳,获得30
35秒前
35秒前
内向皮卡丘完成签到,获得积分10
37秒前
阿豪发布了新的文献求助10
38秒前
39秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141296
求助须知:如何正确求助?哪些是违规求助? 2792352
关于积分的说明 7802183
捐赠科研通 2448490
什么是DOI,文献DOI怎么找? 1302608
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237