A review of normalization and differential abundance methods for microbiome counts data

微生物群 计算机科学 规范化(社会学) 统计推断 软件 探索性数据分析 数据科学 推论 数据挖掘 数据库规范化 机器学习 人工智能 生物信息学 统计 生物 聚类分析 数学 社会学 程序设计语言 人类学
作者
Dionne D. Swift,Kellen G. Cresswell,Robert Johnson,Spiro Stilianoudakis,Xingtao Wei
出处
期刊:Wiley Interdisciplinary Reviews: Computational Statistics [Wiley]
卷期号:15 (1) 被引量:26
标识
DOI:10.1002/wics.1586
摘要

Abstract The recent development of cost‐effective high‐throughput DNA sequencing technologies has tremendously increased microbiome research. However, it has been well documented that the observed microbiome data suffers from compositionality, sparsity, and high variability. All of which pose serious challenges when analyzing microbiome data. Over the last decade, there has been considerable amount of interest into statistical and computational methods to tackle these challenges. The choice of inference aids in the selection of the appropriate statistical methods since only a few methods allow inferences for absolute abundance while most methods allow inferences for relative abundances. An overview of recent methods for differential abundance analysis and normalization of microbiome data is presented, focusing on methods that are accessible but have not been widely covered in previous literature. In detailed descriptions of each method, we discuss assumptions and if and how these methods address the challenges of microbiome data. These methods are compared based on accuracy metrics in real and simulated settings. The goal is to provide a comprehensive but non‐exhaustive set of potential and easily‐accessible tools for differential abundance and normalization of microbiome data. This article is categorized under: Statistical Models > Generalized Linear Models Software for Computational Statistics > Software/Statistical Software Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
正一笑完成签到,获得积分10
1秒前
巨星不吃辣完成签到,获得积分10
1秒前
欧阳振应助王鹏飞采纳,获得10
2秒前
丁牛青完成签到,获得积分10
3秒前
武狼帝完成签到 ,获得积分10
4秒前
mc完成签到 ,获得积分10
5秒前
10秒前
喂鱼鱼完成签到,获得积分10
12秒前
CAOHOU应助Owllight采纳,获得10
12秒前
彭于彦祖应助Owllight采纳,获得30
12秒前
晓兴兴完成签到,获得积分10
13秒前
凉兮发布了新的文献求助10
14秒前
14秒前
顾矜应助RONG采纳,获得10
16秒前
haonanchen完成签到,获得积分10
17秒前
乐乐乐乐乐乐完成签到,获得积分10
18秒前
快乐马发布了新的文献求助10
20秒前
打打应助lalalalala采纳,获得10
20秒前
野原x之助完成签到,获得积分10
21秒前
华仔应助zy0411采纳,获得10
21秒前
Ava应助筱噺采纳,获得10
23秒前
852应助二三采纳,获得10
23秒前
23秒前
内向靖巧发布了新的文献求助10
23秒前
longyuyan完成签到,获得积分10
25秒前
orixero应助羊羊采纳,获得10
25秒前
眼睛大的念桃完成签到,获得积分10
27秒前
JamesPei应助huxiaomin采纳,获得10
27秒前
28秒前
30秒前
Akim应助快乐马采纳,获得100
31秒前
32秒前
coconut完成签到 ,获得积分10
32秒前
33秒前
33秒前
尉迟秋发布了新的文献求助10
33秒前
Peyton Why完成签到,获得积分10
36秒前
二三发布了新的文献求助10
36秒前
香蕉觅云应助任性的微笑采纳,获得10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511532
关于积分的说明 11158765
捐赠科研通 3246148
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874295
科研通“疑难数据库(出版商)”最低求助积分说明 804343