花粉
人工智能
探测器
深度学习
噪音(视频)
计算机科学
显微镜
比例(比率)
光学显微镜
显微镜
模式识别(心理学)
计算机视觉
光学
物理
地图学
地理
生物
图像(数学)
植物
扫描电子显微镜
电信
作者
Chengyao Xiong,Jianqiang Li,Yan Pei,Jingyao Kang,Yanhe Jia,Caihua Ye
出处
期刊:Lecture notes in electrical engineering
日期:2022-01-01
卷期号:: 34-44
标识
DOI:10.1007/978-981-16-8052-6_4
摘要
In this paper, we propose a deep learning framework to automatically detect pollen grains instead of the manual counting of pollen numbers under an optical microscope. Specifically, we first establish a large-scale dataset of pollen grains, which contains 3000 images of five subcategories. All the images in our dataset are scanned by an optical microscope. Then, a pollen grain detector (PGD) based on deep learning is designed to eliminate the effects of noise and capture subtle features of pollen grains. Finally, extensive experiments are conducted and show that the proposed PGD method achieves the best performance (84.52% mAP).
科研通智能强力驱动
Strongly Powered by AbleSci AI