Camouflaged Object Detection via Context-Aware Cross-Level Fusion

背景(考古学) 符号 计算机科学 对象(语法) 水准点(测量) 人工智能 推论 特征(语言学) 模式识别(心理学) 数学 算术 古生物学 语言学 哲学 生物 大地测量学 地理
作者
Geng Chen,Sijie Liu,Yujia Sun,Ge-Peng Ji,Yafeng Wu,Tao Zhou
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 6981-6993 被引量:210
标识
DOI:10.1109/tcsvt.2022.3178173
摘要

Camouflaged object detection (COD) aims to identify the objects that conceal themselves in natural scenes. Accurate COD suffers from a number of challenges associated with low boundary contrast and the large variation of object appearances, e.g., object size and shape. To address these challenges, we propose a novel Context-aware Cross-level Fusion Network ( $\text{C}^{2}\text{F}$ -Net), which fuses context-aware cross-level features for accurately identifying camouflaged objects. Specifically, we compute informative attention coefficients from multi-level features with our Attention-induced Cross-level Fusion Module (ACFM), which further integrates the features under the guidance of attention coefficients. We then propose a Dual-branch Global Context Module (DGCM) to refine the fused features for informative feature representations by exploiting rich global context information. Multiple ACFMs and DGCMs are integrated in a cascaded manner for generating a coarse prediction from high-level features. The coarse prediction acts as an attention map to refine the low-level features before passing them to our Camouflage Inference Module (CIM) to generate the final prediction. We perform extensive experiments on three widely used benchmark datasets and compare $\text{C}^{2}\text{F}$ -Net with state-of-the-art (SOTA) models. The results show that $\text{C}^{2}\text{F}$ -Net is an effective COD model and outperforms SOTA models remarkably. Further, an evaluation on polyp segmentation datasets demonstrates the promising potentials of our $\text{C}^{2}\text{F}$ -Net in COD downstream applications. Our code is publicly available at: https://github.com/Ben57882/C2FNet-TSCVT
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助落后的忆翠采纳,获得10
刚刚
生动的迎梅完成签到,获得积分10
1秒前
1秒前
DSH完成签到,获得积分10
1秒前
2秒前
默默的微笑完成签到,获得积分10
2秒前
2秒前
SciGPT应助旭旭汉堡包采纳,获得10
2秒前
wcx完成签到,获得积分10
2秒前
迷路的听寒完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
田様应助寒冷的元芹采纳,获得10
3秒前
1renebaebae发布了新的文献求助10
3秒前
3秒前
liwayou完成签到,获得积分10
4秒前
zcc1203完成签到,获得积分10
5秒前
Lucas应助Marga77采纳,获得10
5秒前
5秒前
5秒前
852应助小铃铛采纳,获得10
6秒前
6秒前
6秒前
淮竹发布了新的文献求助10
6秒前
Criminology34应助XUXU采纳,获得10
7秒前
忧郁秋凌完成签到,获得积分10
7秒前
大个应助腼腆的虔纹采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
花卷儿完成签到,获得积分10
8秒前
null完成签到,获得积分20
8秒前
蒲公英发布了新的文献求助10
8秒前
迷路白枫发布了新的文献求助10
8秒前
hahaha发布了新的文献求助10
8秒前
斯文败类应助老实土豆采纳,获得10
8秒前
9秒前
Twonej应助kklkimo采纳,获得30
9秒前
yzr01发布了新的文献求助10
9秒前
10秒前
耳目变发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710310
求助须知:如何正确求助?哪些是违规求助? 5198602
关于积分的说明 15260040
捐赠科研通 4862934
什么是DOI,文献DOI怎么找? 2610338
邀请新用户注册赠送积分活动 1560719
关于科研通互助平台的介绍 1518358