Camouflaged Object Detection via Context-Aware Cross-Level Fusion

背景(考古学) 符号 计算机科学 对象(语法) 水准点(测量) 人工智能 推论 特征(语言学) 模式识别(心理学) 数学 算术 古生物学 语言学 哲学 生物 大地测量学 地理
作者
Geng Chen,Sijie Liu,Yujia Sun,Ge-Peng Ji,Yafeng Wu,Tao Zhou
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 6981-6993 被引量:210
标识
DOI:10.1109/tcsvt.2022.3178173
摘要

Camouflaged object detection (COD) aims to identify the objects that conceal themselves in natural scenes. Accurate COD suffers from a number of challenges associated with low boundary contrast and the large variation of object appearances, e.g., object size and shape. To address these challenges, we propose a novel Context-aware Cross-level Fusion Network ( $\text{C}^{2}\text{F}$ -Net), which fuses context-aware cross-level features for accurately identifying camouflaged objects. Specifically, we compute informative attention coefficients from multi-level features with our Attention-induced Cross-level Fusion Module (ACFM), which further integrates the features under the guidance of attention coefficients. We then propose a Dual-branch Global Context Module (DGCM) to refine the fused features for informative feature representations by exploiting rich global context information. Multiple ACFMs and DGCMs are integrated in a cascaded manner for generating a coarse prediction from high-level features. The coarse prediction acts as an attention map to refine the low-level features before passing them to our Camouflage Inference Module (CIM) to generate the final prediction. We perform extensive experiments on three widely used benchmark datasets and compare $\text{C}^{2}\text{F}$ -Net with state-of-the-art (SOTA) models. The results show that $\text{C}^{2}\text{F}$ -Net is an effective COD model and outperforms SOTA models remarkably. Further, an evaluation on polyp segmentation datasets demonstrates the promising potentials of our $\text{C}^{2}\text{F}$ -Net in COD downstream applications. Our code is publicly available at: https://github.com/Ben57882/C2FNet-TSCVT
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助淡定的思松采纳,获得10
刚刚
AlexMoser发布了新的文献求助10
1秒前
s1m0n_123发布了新的文献求助10
2秒前
硝基发布了新的文献求助10
2秒前
安氏月月发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
笨笨含羞草完成签到,获得积分10
5秒前
9秒前
13秒前
cpp完成签到,获得积分20
14秒前
jia雪完成签到,获得积分10
15秒前
15秒前
渠安发布了新的文献求助300
16秒前
17秒前
17秒前
领导范儿应助万万没想到采纳,获得10
20秒前
20秒前
NGU发布了新的文献求助10
20秒前
震动的宛菡完成签到 ,获得积分10
22秒前
北风歌完成签到,获得积分10
23秒前
24秒前
maggiexjl完成签到,获得积分10
24秒前
24秒前
娃娃菜妮发布了新的文献求助10
24秒前
凯凯发布了新的文献求助10
25秒前
25秒前
852应助宥沐采纳,获得10
25秒前
25秒前
Tracey16完成签到,获得积分10
25秒前
所所应助落花生采纳,获得10
27秒前
27秒前
YangHuilin发布了新的文献求助20
28秒前
29秒前
ehsl完成签到,获得积分10
29秒前
我爱小juju发布了新的文献求助10
30秒前
30秒前
领导范儿应助傲娇林采纳,获得10
31秒前
lcx发布了新的文献求助10
31秒前
Adi完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474