背景(考古学)
符号
计算机科学
对象(语法)
水准点(测量)
人工智能
推论
特征(语言学)
边界(拓扑)
模式识别(心理学)
数学
算术
古生物学
语言学
哲学
数学分析
生物
大地测量学
地理
作者
Geng Chen,Sijie Liu,Yujia Sun,Ge-Peng Ji,Yafeng Wu,Tao Zhou
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology
[Institute of Electrical and Electronics Engineers]
日期:2022-05-26
卷期号:32 (10): 6981-6993
被引量:81
标识
DOI:10.1109/tcsvt.2022.3178173
摘要
Camouflaged object detection (COD) aims to identify the objects that conceal themselves in natural scenes. Accurate COD suffers from a number of challenges associated with low boundary contrast and the large variation of object appearances, e.g., object size and shape. To address these challenges, we propose a novel Context-aware Cross-level Fusion Network ( $\text{C}^{2}\text{F}$ -Net), which fuses context-aware cross-level features for accurately identifying camouflaged objects. Specifically, we compute informative attention coefficients from multi-level features with our Attention-induced Cross-level Fusion Module (ACFM), which further integrates the features under the guidance of attention coefficients. We then propose a Dual-branch Global Context Module (DGCM) to refine the fused features for informative feature representations by exploiting rich global context information. Multiple ACFMs and DGCMs are integrated in a cascaded manner for generating a coarse prediction from high-level features. The coarse prediction acts as an attention map to refine the low-level features before passing them to our Camouflage Inference Module (CIM) to generate the final prediction. We perform extensive experiments on three widely used benchmark datasets and compare $\text{C}^{2}\text{F}$ -Net with state-of-the-art (SOTA) models. The results show that $\text{C}^{2}\text{F}$ -Net is an effective COD model and outperforms SOTA models remarkably. Further, an evaluation on polyp segmentation datasets demonstrates the promising potentials of our $\text{C}^{2}\text{F}$ -Net in COD downstream applications. Our code is publicly available at: https://github.com/Ben57882/C2FNet-TSCVT
科研通智能强力驱动
Strongly Powered by AbleSci AI