Practical cucumber leaf disease recognition using improved Swin Transformer and small sample size

卷积神经网络 骨干网 学习迁移 深度学习 像素 人工智能 模式识别(心理学) 特征提取 人工神经网络 变压器 计算机科学 工程类 电气工程 电压 计算机网络
作者
Fengyi Wang,Yuan Rao,Qing Luo,Xiu Jin,Zhaohui Jiang,Zhongke Wu,Shaowen Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:199: 107163-107163 被引量:33
标识
DOI:10.1016/j.compag.2022.107163
摘要

The deep learning methods based on convolutional neural network (CNN) have been widely explored in dataset augmentation and recognition of plant leaf diseases. The recently developed transformer-based models such as Swin Transformer (SwinT) show competitive and even better performance on various visual benchmarks compared with CNN due to their inherent attention mechanism and ability to learn long-range dependency among pixels. In this paper, a backbone network based on improved SwinT was proposed and applied to the data augmentation and recognition of practical cucumber leaf diseases. Firstly, the patch partition of SwinT was improved by step-wise small patch embeddings for enhancing the ability of feature extraction without increasing the number of parameters. Secondly, the leaf extraction module composed of the proposed backbone network and Grad-CAM was integrated into the Generation Adversarial Network (GAN) to construct STA-GAN (SwinT-based and Attention-guided GAN), which generated diseased spots only in the leaf region of healthy images with complex background for augmenting the disease dataset. Finally, by means of transfer learning, the augmented datasets were used to train the recognition model of cucumber leaf diseases with the proposed backbone network. From the experimental results, it has been demonstrated that STA-GAN exhibited stronger ability to generate high-quality images than LeafGAN, even only approximated when LeafGAN consumed much more training images. Additionally, with STA-GAN, the disease recognition accuracies reached 98.97%, 96.81%, 94.85% and 90.01% when improved SwinT, original SwinT, EfficientNet-B5 and ResNet-101 were employed as the backbone of recognition model respectively, increasing by 2.17%, 3.62%, 2.13% and 11.23% compared with LeafGAN, revealing that the approaches based on improved SwinT could indeed help in boosting the performance of both data augmentation and recognition of practical cucumber leaf diseases. The proposed approach has the potential of dealing with the common challenge of insufficient data size and complex background in other similar plant science tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落伍的螃蟹完成签到,获得积分10
刚刚
大个应助抹茶采纳,获得10
刚刚
2秒前
今后应助red采纳,获得10
3秒前
搜集达人应助nczpf2010采纳,获得10
5秒前
5秒前
熊猫骑手完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
smile发布了新的文献求助10
7秒前
Hello应助yan儿采纳,获得10
7秒前
7秒前
8秒前
8秒前
熊猫骑手发布了新的文献求助10
10秒前
肥而不腻的羚羊完成签到,获得积分0
10秒前
11秒前
何楠楠发布了新的文献求助10
12秒前
13秒前
14秒前
可靠的青发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
16秒前
陈隆发布了新的文献求助10
17秒前
18秒前
19秒前
NexusExplorer应助可靠的青采纳,获得10
19秒前
19秒前
微不足道发布了新的文献求助10
19秒前
yan儿发布了新的文献求助10
20秒前
21秒前
22秒前
花痴的手套完成签到 ,获得积分10
22秒前
literature发布了新的文献求助10
25秒前
鲁鲁班发布了新的文献求助20
26秒前
red发布了新的文献求助10
26秒前
cc完成签到 ,获得积分10
28秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233254
求助须知:如何正确求助?哪些是违规求助? 2879834
关于积分的说明 8212896
捐赠科研通 2547289
什么是DOI,文献DOI怎么找? 1376718
科研通“疑难数据库(出版商)”最低求助积分说明 647683
邀请新用户注册赠送积分活动 623115