Practical cucumber leaf disease recognition using improved Swin Transformer and small sample size

卷积神经网络 骨干网 学习迁移 深度学习 像素 人工智能 模式识别(心理学) 特征提取 人工神经网络 变压器 计算机科学 工程类 电气工程 电压 计算机网络
作者
Fengyi Wang,Yuan Rao,Qing Luo,Xiu Jin,Zhaohui Jiang,Zhang Wu,Shaowen Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:199: 107163-107163 被引量:64
标识
DOI:10.1016/j.compag.2022.107163
摘要

The deep learning methods based on convolutional neural network (CNN) have been widely explored in dataset augmentation and recognition of plant leaf diseases. The recently developed transformer-based models such as Swin Transformer (SwinT) show competitive and even better performance on various visual benchmarks compared with CNN due to their inherent attention mechanism and ability to learn long-range dependency among pixels. In this paper, a backbone network based on improved SwinT was proposed and applied to the data augmentation and recognition of practical cucumber leaf diseases. Firstly, the patch partition of SwinT was improved by step-wise small patch embeddings for enhancing the ability of feature extraction without increasing the number of parameters. Secondly, the leaf extraction module composed of the proposed backbone network and Grad-CAM was integrated into the Generation Adversarial Network (GAN) to construct STA-GAN (SwinT-based and Attention-guided GAN), which generated diseased spots only in the leaf region of healthy images with complex background for augmenting the disease dataset. Finally, by means of transfer learning, the augmented datasets were used to train the recognition model of cucumber leaf diseases with the proposed backbone network. From the experimental results, it has been demonstrated that STA-GAN exhibited stronger ability to generate high-quality images than LeafGAN, even only approximated when LeafGAN consumed much more training images. Additionally, with STA-GAN, the disease recognition accuracies reached 98.97%, 96.81%, 94.85% and 90.01% when improved SwinT, original SwinT, EfficientNet-B5 and ResNet-101 were employed as the backbone of recognition model respectively, increasing by 2.17%, 3.62%, 2.13% and 11.23% compared with LeafGAN, revealing that the approaches based on improved SwinT could indeed help in boosting the performance of both data augmentation and recognition of practical cucumber leaf diseases. The proposed approach has the potential of dealing with the common challenge of insufficient data size and complex background in other similar plant science tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
4秒前
微信研友发布了新的文献求助10
5秒前
HT完成签到,获得积分10
7秒前
小皮不皮完成签到,获得积分10
7秒前
MchemG给pphu的求助进行了留言
10秒前
10秒前
fahbfafajk完成签到,获得积分10
14秒前
青椒关注了科研通微信公众号
14秒前
14秒前
15秒前
亲亲小凡发布了新的文献求助20
17秒前
梧桐发布了新的文献求助10
19秒前
23秒前
24秒前
orixero应助爱你不商量采纳,获得10
26秒前
老实的棉花糖完成签到,获得积分10
26秒前
Meng完成签到,获得积分10
26秒前
28秒前
30秒前
NexusExplorer应助太清采纳,获得10
30秒前
31秒前
32秒前
青椒发布了新的文献求助10
33秒前
37秒前
YC完成签到,获得积分10
38秒前
骨筋中外发布了新的文献求助10
41秒前
45秒前
xu完成签到,获得积分10
45秒前
46秒前
AshEnder发布了新的文献求助10
46秒前
田雨完成签到 ,获得积分0
49秒前
林师刚完成签到,获得积分20
49秒前
51秒前
51秒前
亲亲小凡完成签到,获得积分20
53秒前
54秒前
57秒前
竹斌发布了新的文献求助10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775713
求助须知:如何正确求助?哪些是违规求助? 3321315
关于积分的说明 10204848
捐赠科研通 3036291
什么是DOI,文献DOI怎么找? 1666031
邀请新用户注册赠送积分活动 797258
科研通“疑难数据库(出版商)”最低求助积分说明 757783