Practical cucumber leaf disease recognition using improved Swin Transformer and small sample size

卷积神经网络 骨干网 学习迁移 深度学习 像素 人工智能 模式识别(心理学) 特征提取 人工神经网络 变压器 计算机科学 工程类 电气工程 电压 计算机网络
作者
Fengyi Wang,Yuan Rao,Qing Luo,Xiu Jin,Zhaohui Jiang,Zhang Wu,Shaowen Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:199: 107163-107163 被引量:69
标识
DOI:10.1016/j.compag.2022.107163
摘要

The deep learning methods based on convolutional neural network (CNN) have been widely explored in dataset augmentation and recognition of plant leaf diseases. The recently developed transformer-based models such as Swin Transformer (SwinT) show competitive and even better performance on various visual benchmarks compared with CNN due to their inherent attention mechanism and ability to learn long-range dependency among pixels. In this paper, a backbone network based on improved SwinT was proposed and applied to the data augmentation and recognition of practical cucumber leaf diseases. Firstly, the patch partition of SwinT was improved by step-wise small patch embeddings for enhancing the ability of feature extraction without increasing the number of parameters. Secondly, the leaf extraction module composed of the proposed backbone network and Grad-CAM was integrated into the Generation Adversarial Network (GAN) to construct STA-GAN (SwinT-based and Attention-guided GAN), which generated diseased spots only in the leaf region of healthy images with complex background for augmenting the disease dataset. Finally, by means of transfer learning, the augmented datasets were used to train the recognition model of cucumber leaf diseases with the proposed backbone network. From the experimental results, it has been demonstrated that STA-GAN exhibited stronger ability to generate high-quality images than LeafGAN, even only approximated when LeafGAN consumed much more training images. Additionally, with STA-GAN, the disease recognition accuracies reached 98.97%, 96.81%, 94.85% and 90.01% when improved SwinT, original SwinT, EfficientNet-B5 and ResNet-101 were employed as the backbone of recognition model respectively, increasing by 2.17%, 3.62%, 2.13% and 11.23% compared with LeafGAN, revealing that the approaches based on improved SwinT could indeed help in boosting the performance of both data augmentation and recognition of practical cucumber leaf diseases. The proposed approach has the potential of dealing with the common challenge of insufficient data size and complex background in other similar plant science tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑的得美完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
爆米花应助xh采纳,获得10
3秒前
Lee完成签到,获得积分20
3秒前
3秒前
WCheng发布了新的文献求助10
3秒前
4秒前
结实的蘑菇完成签到 ,获得积分10
4秒前
Jasper应助Allein采纳,获得10
4秒前
悦耳娩完成签到,获得积分10
5秒前
5秒前
勤劳的小牛蛙应助AronHUANG采纳,获得10
5秒前
我爱学习完成签到,获得积分10
5秒前
从容襄完成签到,获得积分10
5秒前
沉静幻天完成签到,获得积分10
6秒前
西出阳关完成签到,获得积分10
6秒前
jiao发布了新的文献求助20
7秒前
YC完成签到,获得积分10
7秒前
Frost完成签到,获得积分10
7秒前
wanwei完成签到,获得积分10
7秒前
懵懂的怜南完成签到,获得积分10
7秒前
ATREE完成签到,获得积分10
8秒前
8秒前
8秒前
qiaoqiao完成签到,获得积分10
8秒前
敢敢发布了新的文献求助10
9秒前
sgr完成签到,获得积分10
9秒前
科研通AI2S应助嘻嘻嘻采纳,获得10
9秒前
9秒前
彭于晏应助小巧钧采纳,获得10
10秒前
早起完成签到,获得积分10
10秒前
鲍文启完成签到 ,获得积分10
10秒前
欣喜沛芹发布了新的文献求助10
10秒前
百甲完成签到,获得积分10
11秒前
11秒前
mumu完成签到,获得积分10
12秒前
qiaoqiao发布了新的文献求助10
12秒前
海子完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953608
求助须知:如何正确求助?哪些是违规求助? 3499327
关于积分的说明 11094832
捐赠科研通 3229935
什么是DOI,文献DOI怎么找? 1785767
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478