Multi-Oxyanion Detection by an Organic Field-Effect Transistor with Pattern Recognition Techniques and Its Application to Quantitative Phosphate Sensing in Human Blood Serum

有机场效应晶体管 材料科学 焦磷酸盐 氧阴离子 一磷酸腺苷 组合化学 场效应晶体管 晶体管 化学 腺苷 有机化学 生物化学 电压 催化作用 物理 量子力学
作者
Riho Mitobe,Yoko Sasaki,Wei Tang,Qi Zhou,Xiaojun Lyu,Kohei Ohshiro,Masao Kamiko,Tsuyoshi Minami
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (20): 22903-22911 被引量:15
标识
DOI:10.1021/acsami.1c21092
摘要

We herein report an organic field-effect transistor (OFET) based chemical sensor for multi-oxyanion detection with pattern recognition techniques. The oxyanions ubiquitously play versatile roles in biological systems, and accessing the chemical information they provide would potentially facilitate fundamental research in diagnosis and pharmacology. In this regard, phosphates in human blood serum would be a promising indicator for early case detection of significant diseases. Thus, the development of an easy-to-use chemical sensor for qualitative and quantitative detection of oxyanions is required in real-world scenarios. To this end, an extended-gate-type OFET has been functionalized with a metal complex consisting of 2,2'-dipicolylamine and a copper(II) ion (CuII-dpa), allowing a compact chemical sensor for oxyanion detection. The OFET combined with a uniform CuII-dpa-based self-assembled monolayer (SAM) on the extended-gate gold electrode shows a cross-reactive response, which suggests a discriminatory power for pattern recognition. Indeed, the qualitative detection of 13 oxyanions (i.e., hydrogen monophosphate, pyrophosphate, adenosine monophosphate, adenosine diphosphate, adenosine triphosphate, terephthalate, phthalate, isophthalate, malonate, oxalate, lactate, benzoate, and acetate) has been demonstrated by only using a single OFET-based sensor with linear discriminant analysis, which has shown 100% correct classification. The OFET has been further applied to the quantification of hydrogen monophosphate in human blood serum using a support vector machine (SVM). The multiple predictions of hydrogen monophosphate at 49 and 89 μM have been successfully realized with low errors, which indicates that the OFET-based sensor with pattern recognition techniques would be a practical sensing platform for medical assays. We believe that a combination of the OFET functionalized with the SAM-based recognition scaffold and powerful pattern recognition methods can achieve multi-analyte detection from just a single sensor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孙璧宬完成签到,获得积分10
2秒前
3秒前
3秒前
zsqn发布了新的文献求助10
3秒前
健壮的白易完成签到 ,获得积分10
4秒前
5秒前
油门踩到底完成签到,获得积分20
5秒前
廖翰彬完成签到,获得积分10
5秒前
科研小菜鸡完成签到 ,获得积分10
6秒前
7秒前
7秒前
哆啦不是梦完成签到,获得积分10
7秒前
852应助上进生采纳,获得10
7秒前
7秒前
8秒前
薰硝壤应助安知鱼采纳,获得50
8秒前
111发布了新的文献求助10
8秒前
潇洒诗槐发布了新的文献求助10
9秒前
123发布了新的文献求助10
9秒前
9秒前
harmony完成签到,获得积分10
9秒前
ding应助半生瓜711321采纳,获得10
10秒前
yilin完成签到 ,获得积分10
10秒前
羊驼完成签到,获得积分10
11秒前
阳光稀完成签到,获得积分10
11秒前
默默冷亦发布了新的文献求助10
12秒前
qxk发布了新的文献求助10
12秒前
优雅的数据线完成签到,获得积分10
12秒前
桃酥酥完成签到,获得积分10
12秒前
12秒前
科研小白发布了新的文献求助10
12秒前
许不让发布了新的文献求助30
13秒前
123发布了新的文献求助10
13秒前
YY发布了新的文献求助10
13秒前
gds完成签到,获得积分10
14秒前
喜悦浩天发布了新的文献求助10
14秒前
Doris关注了科研通微信公众号
15秒前
15秒前
爆米花应助Joy采纳,获得10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156450
求助须知:如何正确求助?哪些是违规求助? 2807921
关于积分的说明 7875266
捐赠科研通 2466226
什么是DOI,文献DOI怎么找? 1312727
科研通“疑难数据库(出版商)”最低求助积分说明 630255
版权声明 601919