Silica nanoparticles cause spermatogenesis dysfunction in mice via inducing cell cycle arrest and apoptosis

细胞凋亡 氧化应激 精子发生 细胞生物学 下调和上调 细胞周期检查点 DNA损伤 细胞周期 生殖毒性 程序性细胞死亡 男科 生物 化学 毒性 内分泌学 内科学 医学 生物化学 DNA 基因
作者
Zhiyi Guo,Xuying Wang,Pinzheng Zhang,Fanli Sun,Ziyun Chen,Wendong Ma,Fangyu Meng,Huiyu Hao,Xuan Shang
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier]
卷期号:231: 113210-113210 被引量:6
标识
DOI:10.1016/j.ecoenv.2022.113210
摘要

The widespread use of silica nanoparticles (SiNPs) has increased the risk of human exposure, which raised concerns about their adverse effects on human health, especially the reproductive system. Previous studies have shown that SiNPs could cause damage to reproductive organs, but the specific mechanism is still unclear. In this study, to investigate the underlying mechanism of male reproductive toxicity induced by SiNPs, 40 male mice at the age of 8 weeks were divided into two groups and then intraperitoneally injected with vehicle control or 10 mg/kg SiNPs per day for one week. The results showed that SiNPs could damage testicular structure, perturb spermatogenesis and reduce serum testosterone levels, leading to a decrease in sperm quality and quantity. In addition, the ROS level in the testis of exposed mice was significantly increased, followed by imbalance of the oxidative redox status. Further study revealed that exposure to SiNPs led to cell cycle arrest and apoptosis, as shown by downregulation of the expression of positive cell cycle regulators and the activation of TNF-α/TNFR Ⅰ-mediated apoptotic pathway. The results demonstrated that SiNPs could cause testicles injure via inducing oxidative stress and DNA damage which led to cell cycle arrest and apoptosis, and thereby resulting in spermatogenic dysfunction • SiNPs could cause damage to the structure of testicular tissue in mice. • SiNPs could perturb the process of spermatogenesis and reduce sperm quality and quantity. • SiNPs could increase ROS production and thus induce oxidative stress. • SiNPs led to cell cycle arrest and cell apoptosis via activation of ATM/p53 pathway and TNF-α/TNFR Ⅰ-mediated signaling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助肖雪依采纳,获得30
刚刚
学术废物发布了新的文献求助10
1秒前
2秒前
3秒前
番茄完成签到,获得积分10
6秒前
7秒前
张柔完成签到 ,获得积分10
7秒前
王治豪发布了新的文献求助10
7秒前
123完成签到,获得积分10
8秒前
Chen发布了新的文献求助10
8秒前
wyn发布了新的文献求助80
9秒前
SIN完成签到,获得积分20
9秒前
9秒前
11秒前
12秒前
逍遥发布了新的文献求助10
12秒前
12秒前
skyyy完成签到 ,获得积分10
13秒前
今后应助公冶愚志采纳,获得10
13秒前
一树春风发布了新的文献求助10
14秒前
松鼠完成签到 ,获得积分10
14秒前
可爱的函函应助小鱼采纳,获得10
14秒前
安息香发布了新的文献求助10
15秒前
QQQ完成签到,获得积分10
15秒前
所所应助Radon采纳,获得10
16秒前
jingzhang发布了新的文献求助10
16秒前
magicyouyou完成签到,获得积分10
17秒前
17秒前
学术废物完成签到,获得积分10
18秒前
19秒前
wanci应助sunianjinshi采纳,获得10
20秒前
玛格苏芮发布了新的文献求助10
20秒前
852应助IAMXC采纳,获得10
21秒前
安息香完成签到,获得积分10
22秒前
西贝完成签到 ,获得积分10
24秒前
充电宝应助一树春风采纳,获得10
25秒前
领导范儿应助哈哈哈采纳,获得10
25秒前
25秒前
乐正怡发布了新的文献求助30
26秒前
26秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142138
求助须知:如何正确求助?哪些是违规求助? 2793085
关于积分的说明 7805514
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303274
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291