A novel standpoint of Pressure Swing Adsorption processes multi-objective optimization: An approach based on feasible operation region mapping

变压吸附 摇摆 吸附 计算机科学 数学优化 真空摆动吸附 工艺工程 数学 工程类 化学 机械工程 物理化学
作者
Carine M. Rebello,Márcio A. F. Martins,Alírio E. Rodrigues,José M. Loureiro,Ana M. Ribeiro,Idelfonso B. R. Nogueira
出处
期刊:Chemical engineering research & design [Elsevier]
卷期号:178: 590-601 被引量:12
标识
DOI:10.1016/j.cherd.2021.12.047
摘要

• A new approach for multi-objective optimization of Pressure Swing Adsorption. • Fisher–Snedecor test to the solution of a multi-objective problem is deduced. • The concept of Feasible Operating Regions is presented to address the study case. • The obtained Pareto region is divided into operating sub-regions clustering. Optimization of cyclic adsorption processes is a challenging issue due to the dynamic-operating complexity of these processes. In this context, this work proposes a new approach for multi-objective optimization of Pressure Swing Adsorption (PSA) units, extending the concept of the Pareto front to Pareto region. The proposed methodology, hitherto unexplored in the literature, consists of integrating a likelihood test, an arrangement from the Fisher–Snedecor test to the solution of a multi-objective problem provided by a Swarm Particle Optimization technique. The Pareto region is divided into operating sub-regions that meet the optimization constraints and prioritize a determined objective by a clustering process. These sub-regions make the operation more flexible. Furthermore, the analysis of the operating variables feasible operation interval demonstrated to be an important tool to provide information regarding the system behavior. As a study case, it is presented the optimization of a PSA process for syngas purification. The results demonstrate that the methodology proposed here uses the feasible operation region map and the clustering strategy to exploit the multi-objective optimization. Therefore, providing a more reliable and precise optimization of PSA units, while providing an important tool for making decisions in the PSA system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA完成签到,获得积分10
1秒前
瀚森发布了新的文献求助20
1秒前
j736999565发布了新的文献求助10
2秒前
调皮的翠绿关注了科研通微信公众号
3秒前
含糊的小松鼠完成签到,获得积分10
3秒前
桐桐应助斯文墨镜采纳,获得10
3秒前
NexusExplorer应助jjkjkjkjj采纳,获得10
4秒前
4秒前
5秒前
没头脑完成签到,获得积分10
5秒前
孤虹哲凝完成签到,获得积分10
5秒前
王楠楠发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
monly发布了新的文献求助20
8秒前
tangping关注了科研通微信公众号
9秒前
合适钥匙发布了新的文献求助10
10秒前
所所应助孤虹哲凝采纳,获得30
11秒前
善学以致用应助飞鸟采纳,获得10
11秒前
辛夷完成签到,获得积分10
12秒前
12秒前
www发布了新的文献求助10
13秒前
14秒前
14秒前
李昕123发布了新的文献求助10
14秒前
14秒前
滕擎发布了新的文献求助10
15秒前
王者归来完成签到,获得积分10
17秒前
17秒前
一屋鱼完成签到 ,获得积分10
18秒前
yzy完成签到,获得积分10
18秒前
18秒前
jjkjkjkjj发布了新的文献求助10
20秒前
20秒前
香蕉觅云应助111采纳,获得10
21秒前
研友_VZG7GZ应助Hana采纳,获得10
21秒前
21秒前
丘比特应助坚强夜白采纳,获得10
21秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158017
求助须知:如何正确求助?哪些是违规求助? 2809393
关于积分的说明 7881798
捐赠科研通 2467878
什么是DOI,文献DOI怎么找? 1313757
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943