Controlling covalent chemistry on graphene oxide

石墨烯 氧化物 反应性(心理学) 衍生化 表面改性 纳米技术 环氧化物 化学 共价键 材料科学 组合化学 有机化学 催化作用 医学 病理 物理化学 高效液相色谱法 替代医学
作者
Shi Guo,Slaven Garaj,Alberto Bianco,Cécilia Ménard‐Moyon
出处
期刊:Nature Reviews Physics [Springer Nature]
卷期号:4 (4): 247-262 被引量:126
标识
DOI:10.1038/s42254-022-00422-w
摘要

Graphene has attracted intensive research interest in many fields, owing to its remarkable physicochemical properties. Nevertheless, its low dispersibility in most organic solvents and in water, and its tendency to aggregate, prevent full exploitation of its properties. Graphene oxide (GO) is an alternative material that exhibits high dispersibility in polar solvents. GO contains abundant oxygen-containing groups, mainly epoxide and hydroxy groups, which can be further chemically derivatized. However, because of GO’s high reactivity, several reactions may occur simultaneously, often leading to uncontrolled GO derivatives. Moreover, because GO can be easily reduced, functionalization should be performed under mild conditions. In this Review, we discuss the chemical reactivity of GO and explore issues that hamper precise control of its functionalization, such as its instability, the lack of a well-defined chemical structure and the presence of impurities. We focus on strategies for the selective derivatization of the oxygenated groups and C=C bonds, along with the challenges for unambiguous characterization of the resulting structures. We briefly review applications of GO materials, relating their chemistry and nanostructure to desired physical properties and function, and chart future directions for improving the control of GO chemistry. Graphene oxide (GO) has attracted intensive research interest, owing to remarkable physicochemical properties. Nevertheless, its high chemical reactivity and low stability may lead to uncontrolled GO derivatives. The chemistry of GO can be controlled by selective derivatization of the oxygenated groups and C=C bonds and by appropriate characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流年完成签到 ,获得积分10
刚刚
1秒前
1秒前
2秒前
2秒前
清欢完成签到,获得积分10
3秒前
Kaelin完成签到,获得积分20
4秒前
小米稀饭发布了新的文献求助30
4秒前
Mr李完成签到,获得积分10
5秒前
lddd发布了新的文献求助10
5秒前
科目三应助璐洋采纳,获得10
5秒前
风雨无阻完成签到,获得积分10
5秒前
5秒前
seven完成签到,获得积分10
6秒前
feiyu发布了新的文献求助10
6秒前
CodeCraft应助黄浦江采纳,获得10
7秒前
朱逸梦完成签到,获得积分10
7秒前
cff发布了新的文献求助10
7秒前
9秒前
Kaelin发布了新的文献求助200
9秒前
11秒前
zengyan发布了新的文献求助10
11秒前
11秒前
11秒前
烟花应助ruby采纳,获得10
12秒前
13秒前
Owen应助Zh采纳,获得10
14秒前
14秒前
传奇3应助ljs采纳,获得10
14秒前
15秒前
qqm关注了科研通微信公众号
15秒前
wwz应助zz采纳,获得10
15秒前
cff完成签到,获得积分10
16秒前
16秒前
Hoooo...发布了新的文献求助10
17秒前
17秒前
18秒前
完美世界应助着急的谷芹采纳,获得10
18秒前
汉堡包应助楚楚楚采纳,获得10
18秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135752
求助须知:如何正确求助?哪些是违规求助? 2786595
关于积分的说明 7778521
捐赠科研通 2442742
什么是DOI,文献DOI怎么找? 1298676
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866