Hierarchical microstructures enabled excellent low-temperature strength-ductility synergy in bulk pure tungsten

材料科学 微观结构 延展性(地球科学) 极限抗拉强度 脆性 层状结构 复合材料 大气温度范围 晶界 冶金 蠕动 物理 气象学
作者
Xiaofeng Xie,Z.M. Xie,Rui Liu,Q.F. Fang,C.S. Liu,Wei-Zhong Han,Xuebang Wu
出处
期刊:Acta Materialia [Elsevier]
卷期号:228: 117765-117765 被引量:75
标识
DOI:10.1016/j.actamat.2022.117765
摘要

Refractory tungsten (W) is notoriously brittle at room temperature, which restricts its workability and narrows the temperature range of critical applications. Here, we report a multi-scale microstructure modulation strategy to achieve an excellent combination of low-temperature ductility and high strength in bulk pure W. Through fast two-step low temperature sintering of the activated W powders and high-energy-rate forging treatments, unique hierarchical microstructures were constructed in pure W, including lamellar elongated matrix grains, with profuse interior fine sub-grains, and high density of mobile edge and mixed dislocations. At room temperature, the hierarchical structured bulk W exhibits a detectable tensile ductility and an ultimate tensile strength (UTS) of 1.35 GPa. The high strength can be maintained at elevated temperatures, i.e., UTS > 1.0 GPa at 200 °C; it also has a remarkable tensile ductility of 15.3% at this temperature. These properties are significantly better than those reported in bulk pure W and W alloys with second phase particles. The shielding and blunting effects from low-angle grain boundaries and highly mobile dislocations, and the lamellar structure reaped delamination toughening effect are the main mechanisms for the improved low-temperature ductility and strength. This study demonstrates a practical route to achieve attractive low-temperature strength-ductility synergy in bulk W without involving any alloying elements, and it is a feasible and low-cost pathway to design high performance refractory metals and alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小周发布了新的文献求助10
1秒前
smile发布了新的文献求助10
1秒前
2秒前
Lore完成签到 ,获得积分10
2秒前
2秒前
jiang完成签到,获得积分10
3秒前
3秒前
无奈的酒窝关注了科研通微信公众号
4秒前
毛毛完成签到,获得积分10
4秒前
正在完成签到,获得积分10
5秒前
5秒前
充电宝应助JR采纳,获得10
6秒前
6秒前
cc完成签到,获得积分20
6秒前
李爱国应助111采纳,获得10
6秒前
jy发布了新的文献求助10
6秒前
好好完成签到 ,获得积分10
7秒前
阿希塔完成签到,获得积分10
7秒前
JamesPei应助看看采纳,获得10
7秒前
9秒前
9秒前
卢健辉发布了新的文献求助10
9秒前
10秒前
cookie完成签到,获得积分10
10秒前
JMZ完成签到 ,获得积分10
12秒前
英姑应助星星采纳,获得10
12秒前
spurs17发布了新的文献求助30
13秒前
LH完成签到,获得积分10
13秒前
CodeCraft应助Island采纳,获得10
14秒前
annis完成签到,获得积分10
14秒前
小黄应助asir_xw采纳,获得10
15秒前
认真的rain完成签到,获得积分10
15秒前
糊涂的小伙完成签到,获得积分10
16秒前
芒果豆豆完成签到,获得积分10
16秒前
赎罪完成签到 ,获得积分10
17秒前
卢健辉完成签到,获得积分10
17秒前
17秒前
18秒前
负责的中道完成签到,获得积分10
19秒前
dyh6802发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808