亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Chronic lung allograft dysfunction phenotype and prognosis by machine learning CT analysis

医学 胸腔积液 接收机工作特性 闭塞性细支气管炎 危险系数 放射科 肺移植 内科学 置信区间
作者
Micheal McInnis,Jin Ma,Gauri R. Karur,Christian Houbois,Liran Levy,Jan Havlín,Eyal Fuchs,Jussi Tikkanen,Chung‐Wai Chow,Ella Huszti,Tereza Martinu
出处
期刊:The European respiratory journal [European Respiratory Society]
卷期号:60 (1): 2101652-2101652 被引量:17
标识
DOI:10.1183/13993003.01652-2021
摘要

Background Chronic lung allograft dysfunction (CLAD) is the principal cause of graft failure in lung transplant recipients and prognosis depends on CLAD phenotype. We used a machine learning computed tomography (CT) lung texture analysis tool at CLAD diagnosis for phenotyping and prognostication compared with radiologist scoring. Methods This retrospective study included all adult first double lung transplant patients (January 2010–December 2015) with CLAD (censored December 2019) and inspiratory CT near CLAD diagnosis. The machine learning tool quantified ground-glass opacity, reticulation, hyperlucent lung and pulmonary vessel volume (PVV). Two radiologists scored for ground-glass opacity, reticulation, consolidation, pleural effusion, air trapping and bronchiectasis. Receiver operating characteristic curve analysis was used to evaluate the diagnostic performance of machine learning and radiologist for CLAD phenotype. Multivariable Cox proportional hazards regression analysis for allograft survival controlled for age, sex, native lung disease, cytomegalovirus serostatus and CLAD phenotype. Results 88 patients were included (57 bronchiolitis obliterans syndrome (BOS), 20 restrictive allograft syndrome (RAS)/mixed and 11 unclassified/undefined) with CT a median 9.5 days from CLAD onset. Radiologist and machine learning parameters phenotyped RAS/mixed with PVV as the strongest indicator (area under the curve (AUC) 0.85). Machine learning hyperlucent lung phenotyped BOS using only inspiratory CT (AUC 0.76). Radiologist and machine learning parameters predicted graft failure in the multivariable analysis, best with PVV (hazard ratio 1.23, 95% CI 1.05–1.44; p=0.01). Conclusions Machine learning discriminated between CLAD phenotypes on CT. Both radiologist and machine learning scoring were associated with graft failure, independent of CLAD phenotype. PVV, unique to machine learning, was the strongest in phenotyping and prognostication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yannnis完成签到 ,获得积分10
2秒前
andrele应助科研通管家采纳,获得10
9秒前
huenguyenvan完成签到,获得积分10
11秒前
33秒前
pyhsicsyyc完成签到,获得积分10
37秒前
眨眼发布了新的文献求助10
38秒前
cqbrain123完成签到,获得积分10
38秒前
Freeasy完成签到 ,获得积分10
41秒前
1分钟前
斤斤发布了新的文献求助10
1分钟前
耶耶cc完成签到 ,获得积分10
1分钟前
1分钟前
丘比特应助斤斤采纳,获得10
1分钟前
JJBOND发布了新的文献求助10
1分钟前
1分钟前
起风了1995发布了新的文献求助10
1分钟前
香蕉觅云应助pyhsicsyyc采纳,获得10
1分钟前
Orange应助努力学习采纳,获得10
1分钟前
努力学习完成签到,获得积分10
2分钟前
踏云完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
单人旁发布了新的文献求助30
2分钟前
Reginaaaaa发布了新的文献求助10
2分钟前
起风了1995发布了新的文献求助10
2分钟前
单人旁完成签到,获得积分20
3分钟前
葛起彤发布了新的文献求助10
3分钟前
香菜大王完成签到 ,获得积分10
4分钟前
ZanE完成签到,获得积分10
4分钟前
4分钟前
苏亚婷发布了新的文献求助10
4分钟前
小李完成签到,获得积分10
4分钟前
TBF完成签到,获得积分10
4分钟前
cy0824完成签到 ,获得积分10
6分钟前
andrele应助科研通管家采纳,获得10
6分钟前
无极微光应助科研通管家采纳,获得20
6分钟前
福斯卡完成签到 ,获得积分10
6分钟前
7分钟前
朴实剑通完成签到 ,获得积分10
7分钟前
南瓜发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845261
求助须知:如何正确求助?哪些是违规求助? 6200658
关于积分的说明 15616290
捐赠科研通 4962063
什么是DOI,文献DOI怎么找? 2675263
邀请新用户注册赠送积分活动 1620017
关于科研通互助平台的介绍 1575307