Chronic lung allograft dysfunction phenotype and prognosis by machine learning CT analysis

医学 胸腔积液 接收机工作特性 闭塞性细支气管炎 危险系数 放射科 肺移植 内科学 置信区间
作者
Micheal McInnis,Jin Ma,Gauri R. Karur,Christian Houbois,Liran Levy,Jan Havlín,Eyal Fuchs,Jussi Tikkanen,Chung‐Wai Chow,Ella Huszti,Tereza Martinu
出处
期刊:The European respiratory journal [European Respiratory Society]
卷期号:60 (1): 2101652-2101652 被引量:17
标识
DOI:10.1183/13993003.01652-2021
摘要

Background Chronic lung allograft dysfunction (CLAD) is the principal cause of graft failure in lung transplant recipients and prognosis depends on CLAD phenotype. We used a machine learning computed tomography (CT) lung texture analysis tool at CLAD diagnosis for phenotyping and prognostication compared with radiologist scoring. Methods This retrospective study included all adult first double lung transplant patients (January 2010–December 2015) with CLAD (censored December 2019) and inspiratory CT near CLAD diagnosis. The machine learning tool quantified ground-glass opacity, reticulation, hyperlucent lung and pulmonary vessel volume (PVV). Two radiologists scored for ground-glass opacity, reticulation, consolidation, pleural effusion, air trapping and bronchiectasis. Receiver operating characteristic curve analysis was used to evaluate the diagnostic performance of machine learning and radiologist for CLAD phenotype. Multivariable Cox proportional hazards regression analysis for allograft survival controlled for age, sex, native lung disease, cytomegalovirus serostatus and CLAD phenotype. Results 88 patients were included (57 bronchiolitis obliterans syndrome (BOS), 20 restrictive allograft syndrome (RAS)/mixed and 11 unclassified/undefined) with CT a median 9.5 days from CLAD onset. Radiologist and machine learning parameters phenotyped RAS/mixed with PVV as the strongest indicator (area under the curve (AUC) 0.85). Machine learning hyperlucent lung phenotyped BOS using only inspiratory CT (AUC 0.76). Radiologist and machine learning parameters predicted graft failure in the multivariable analysis, best with PVV (hazard ratio 1.23, 95% CI 1.05–1.44; p=0.01). Conclusions Machine learning discriminated between CLAD phenotypes on CT. Both radiologist and machine learning scoring were associated with graft failure, independent of CLAD phenotype. PVV, unique to machine learning, was the strongest in phenotyping and prognostication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小珂完成签到,获得积分10
刚刚
皮皮虾完成签到 ,获得积分10
2秒前
3秒前
不能吃太饱完成签到 ,获得积分10
5秒前
buqi发布了新的文献求助10
6秒前
伶俐紫完成签到,获得积分10
7秒前
7秒前
8秒前
Annie发布了新的文献求助20
8秒前
二队淼队长完成签到,获得积分10
9秒前
我是老大应助清沧炽魂采纳,获得10
9秒前
彳亍宣完成签到 ,获得积分10
10秒前
缥缈的闭月完成签到,获得积分10
13秒前
buqi完成签到,获得积分10
13秒前
孔wj完成签到,获得积分10
14秒前
縤雨完成签到 ,获得积分10
14秒前
14秒前
Tao完成签到,获得积分10
19秒前
19秒前
黄景滨完成签到 ,获得积分10
20秒前
21秒前
wwrjj完成签到,获得积分10
22秒前
liu完成签到,获得积分10
22秒前
孤独听雨的猫完成签到 ,获得积分10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
不倦应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
24秒前
macarthur发布了新的文献求助10
24秒前
24秒前
HaojunWang完成签到 ,获得积分10
25秒前
脑洞疼应助wwrjj采纳,获得10
28秒前
Jacob完成签到,获得积分10
28秒前
聪明的宛菡完成签到,获得积分10
30秒前
殷勤的涵梅完成签到 ,获得积分10
32秒前
35秒前
37秒前
38秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212499
求助须知:如何正确求助?哪些是违规求助? 4388659
关于积分的说明 13664251
捐赠科研通 4249165
什么是DOI,文献DOI怎么找? 2331448
邀请新用户注册赠送积分活动 1329148
关于科研通互助平台的介绍 1282561