Chronic lung allograft dysfunction phenotype and prognosis by machine learning CT analysis

医学 胸腔积液 接收机工作特性 闭塞性细支气管炎 危险系数 放射科 肺移植 内科学 置信区间
作者
Micheal McInnis,Jin Ma,Gauri Rani Karur,Christian Houbois,Liran Levy,Jan Havlín,Eyal Fuchs,Jussi Tikkanen,Chung‐Wai Chow,Ella Huszti,T. Martinu
出处
期刊:The European respiratory journal [European Respiratory Society]
卷期号:60 (1): 2101652-2101652 被引量:4
标识
DOI:10.1183/13993003.01652-2021
摘要

Background Chronic lung allograft dysfunction (CLAD) is the principal cause of graft failure in lung transplant recipients and prognosis depends on CLAD phenotype. We used a machine learning computed tomography (CT) lung texture analysis tool at CLAD diagnosis for phenotyping and prognostication compared with radiologist scoring. Methods This retrospective study included all adult first double lung transplant patients (January 2010–December 2015) with CLAD (censored December 2019) and inspiratory CT near CLAD diagnosis. The machine learning tool quantified ground-glass opacity, reticulation, hyperlucent lung and pulmonary vessel volume (PVV). Two radiologists scored for ground-glass opacity, reticulation, consolidation, pleural effusion, air trapping and bronchiectasis. Receiver operating characteristic curve analysis was used to evaluate the diagnostic performance of machine learning and radiologist for CLAD phenotype. Multivariable Cox proportional hazards regression analysis for allograft survival controlled for age, sex, native lung disease, cytomegalovirus serostatus and CLAD phenotype. Results 88 patients were included (57 bronchiolitis obliterans syndrome (BOS), 20 restrictive allograft syndrome (RAS)/mixed and 11 unclassified/undefined) with CT a median 9.5 days from CLAD onset. Radiologist and machine learning parameters phenotyped RAS/mixed with PVV as the strongest indicator (area under the curve (AUC) 0.85). Machine learning hyperlucent lung phenotyped BOS using only inspiratory CT (AUC 0.76). Radiologist and machine learning parameters predicted graft failure in the multivariable analysis, best with PVV (hazard ratio 1.23, 95% CI 1.05–1.44; p=0.01). Conclusions Machine learning discriminated between CLAD phenotypes on CT. Both radiologist and machine learning scoring were associated with graft failure, independent of CLAD phenotype. PVV, unique to machine learning, was the strongest in phenotyping and prognostication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张自信发布了新的文献求助10
1秒前
小鱼爱吃猫完成签到,获得积分10
2秒前
大锤哥完成签到,获得积分10
3秒前
金角大王发布了新的文献求助10
4秒前
wx完成签到,获得积分10
4秒前
6秒前
欧班长完成签到 ,获得积分10
8秒前
如意大侠完成签到,获得积分10
8秒前
二猫完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
Twilight完成签到,获得积分10
11秒前
aaaaaa发布了新的文献求助10
11秒前
12秒前
3301发布了新的文献求助10
12秒前
诚心太君完成签到,获得积分10
12秒前
悦悦发布了新的文献求助20
12秒前
大熊发布了新的文献求助10
14秒前
研友_VZG7GZ应助如意大侠采纳,获得10
14秒前
柒柒球完成签到,获得积分10
14秒前
壮观静柏完成签到 ,获得积分10
15秒前
小肖的KYT完成签到,获得积分10
15秒前
张自信完成签到,获得积分10
17秒前
lll发布了新的文献求助10
17秒前
CodeCraft应助xh96采纳,获得10
18秒前
风中的天空完成签到,获得积分10
21秒前
21秒前
都是发布了新的文献求助10
22秒前
#include完成签到,获得积分10
26秒前
27秒前
杨白秋完成签到,获得积分10
27秒前
ly2162212311完成签到,获得积分10
29秒前
30秒前
慕青应助长孙归尘采纳,获得10
31秒前
32秒前
踏实的道消完成签到,获得积分10
32秒前
小高完成签到,获得积分10
33秒前
三重积分咖啡完成签到 ,获得积分10
34秒前
七凌完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163395
求助须知:如何正确求助?哪些是违规求助? 2814263
关于积分的说明 7904141
捐赠科研通 2473792
什么是DOI,文献DOI怎么找? 1317118
科研通“疑难数据库(出版商)”最低求助积分说明 631625
版权声明 602187