Real-time estimation of quality-related variable for dynamic and non-Gaussian process based on semisupervised Bayesian HMM

计算机科学 软传感器 隐马尔可夫模型 高斯过程 人工智能 高斯分布 推论 模式识别(心理学) 过程(计算) 贝叶斯推理 贝叶斯概率 机器学习 变量(数学) 缺少数据 混合模型 数据挖掘
作者
Weiming Shao,Chuanfa Xiao,Jingbo Wang,Dongya Zhao,Zhihuan Song
出处
期刊:Journal of Process Control [Elsevier]
卷期号:111: 59-74
标识
DOI:10.1016/j.jprocont.2022.01.007
摘要

Real-time sensing of product quality-related key variables in industrial processes has long been a tough task due to technical or economical limitations. Data-driven soft sensing techniques prove to be promising solution to this problem. However, industrial data are complicated with compound complex characteristics, in particular the intractable process dynamics, non-Gaussian distributions and missing value of the quality variables, which render significant difficulties in the development of high-accuracy soft sensor. Given such vexed issues, this paper proposes a dynamic soft sensing method called ‘semisupervised Bayesian hidden Markov model (SsBHMM)’. In the SsBHMM, a semisupervised fully Bayesian regressive model structure is first designed, which accounts for the process dynamics using first-order Markov chain with hidden variables (HVs) and deals with the non-Gaussianities by mixture of Gaussians. Moreover, based on variational inference an efficient training algorithm is developed to learn parameters of the SsBHMM, which mines both labeled and unlabeled data such that the issue of missing value of quality variables can be dealt with. The performance of the SsBHMM is evaluated by a numerical example and an industrial low-temperature transformation unit, through which the advantages and the feasibility of the SsBHMM have been demonstrated. • A novel soft sensor model ’SsBHMM’ for non-Gaussian and dynamic process is proposed. • A semisupervised efficient learning algorithm is developed to train the SsBHMM. • Promising application foreground of the SsBHMM is demonstrated for practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nanhe698发布了新的文献求助10
1秒前
Huang完成签到,获得积分10
1秒前
碳土不凡完成签到 ,获得积分10
2秒前
2秒前
淡淡采白发布了新的文献求助10
3秒前
3秒前
4秒前
Akim应助dingdong采纳,获得10
4秒前
4秒前
4秒前
satchzhao发布了新的文献求助10
4秒前
可爱的函函应助尺素寸心采纳,获得10
4秒前
66发布了新的文献求助10
5秒前
一鸣完成签到,获得积分10
5秒前
5秒前
ding应助呵呵呵呵采纳,获得10
5秒前
5秒前
汉堡包应助hkxfg采纳,获得10
7秒前
8秒前
sw完成签到,获得积分10
8秒前
没有神的过往完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
11秒前
芋圆不圆完成签到,获得积分10
12秒前
招财不肥发布了新的文献求助10
13秒前
zxc111发布了新的文献求助10
13秒前
魔幻的从梦完成签到,获得积分10
13秒前
14秒前
Xiaoxiao应助sunyexuan采纳,获得10
15秒前
16秒前
17秒前
淼淼之锋完成签到 ,获得积分10
17秒前
赢赢完成签到 ,获得积分10
17秒前
18秒前
19秒前
科目三应助落落采纳,获得10
21秒前
67发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808