Real-time estimation of quality-related variable for dynamic and non-Gaussian process based on semisupervised Bayesian HMM

计算机科学 软传感器 隐马尔可夫模型 高斯过程 人工智能 高斯分布 推论 模式识别(心理学) 过程(计算) 贝叶斯推理 贝叶斯概率 机器学习 变量(数学) 缺少数据 混合模型 数据挖掘
作者
Weiming Shao,Chuanfa Xiao,Jingbo Wang,Dongya Zhao,Zhihuan Song
出处
期刊:Journal of Process Control [Elsevier BV]
卷期号:111: 59-74
标识
DOI:10.1016/j.jprocont.2022.01.007
摘要

Real-time sensing of product quality-related key variables in industrial processes has long been a tough task due to technical or economical limitations. Data-driven soft sensing techniques prove to be promising solution to this problem. However, industrial data are complicated with compound complex characteristics, in particular the intractable process dynamics, non-Gaussian distributions and missing value of the quality variables, which render significant difficulties in the development of high-accuracy soft sensor. Given such vexed issues, this paper proposes a dynamic soft sensing method called ‘semisupervised Bayesian hidden Markov model (SsBHMM)’. In the SsBHMM, a semisupervised fully Bayesian regressive model structure is first designed, which accounts for the process dynamics using first-order Markov chain with hidden variables (HVs) and deals with the non-Gaussianities by mixture of Gaussians. Moreover, based on variational inference an efficient training algorithm is developed to learn parameters of the SsBHMM, which mines both labeled and unlabeled data such that the issue of missing value of quality variables can be dealt with. The performance of the SsBHMM is evaluated by a numerical example and an industrial low-temperature transformation unit, through which the advantages and the feasibility of the SsBHMM have been demonstrated. • A novel soft sensor model ’SsBHMM’ for non-Gaussian and dynamic process is proposed. • A semisupervised efficient learning algorithm is developed to train the SsBHMM. • Promising application foreground of the SsBHMM is demonstrated for practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
塔莉娅完成签到,获得积分10
1秒前
杨雯娜完成签到 ,获得积分10
2秒前
lyp完成签到,获得积分10
2秒前
灵均发布了新的文献求助10
2秒前
塔塔饼完成签到,获得积分10
2秒前
龙傲天完成签到 ,获得积分20
2秒前
3秒前
燃燃完成签到 ,获得积分10
3秒前
关我屁事完成签到 ,获得积分10
3秒前
3秒前
4秒前
麦乐迪应助生动的翠容采纳,获得10
4秒前
4秒前
bob发布了新的文献求助30
4秒前
abtitw完成签到,获得积分10
4秒前
呼呼完成签到,获得积分10
4秒前
阳yang完成签到,获得积分10
5秒前
江江完成签到 ,获得积分10
5秒前
5秒前
材袅应助淡定采文采纳,获得10
6秒前
6秒前
英姑应助兴奋的松采纳,获得10
6秒前
xhh完成签到,获得积分10
7秒前
易方完成签到,获得积分10
7秒前
Demons发布了新的文献求助10
8秒前
8秒前
mars发布了新的文献求助10
8秒前
9秒前
冬瓜熊发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
金老师完成签到,获得积分10
10秒前
古月博士完成签到,获得积分10
10秒前
tough发布了新的文献求助10
10秒前
11秒前
acutelily完成签到,获得积分10
11秒前
江南羽完成签到,获得积分10
11秒前
zhangyulu完成签到 ,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904