Real-time estimation of quality-related variable for dynamic and non-Gaussian process based on semisupervised Bayesian HMM

计算机科学 软传感器 隐马尔可夫模型 高斯过程 人工智能 高斯分布 推论 模式识别(心理学) 过程(计算) 贝叶斯推理 贝叶斯概率 机器学习 变量(数学) 缺少数据 混合模型 数据挖掘
作者
Weiming Shao,Chuanfa Xiao,Jingbo Wang,Dongya Zhao,Zhihuan Song
出处
期刊:Journal of Process Control [Elsevier]
卷期号:111: 59-74
标识
DOI:10.1016/j.jprocont.2022.01.007
摘要

Real-time sensing of product quality-related key variables in industrial processes has long been a tough task due to technical or economical limitations. Data-driven soft sensing techniques prove to be promising solution to this problem. However, industrial data are complicated with compound complex characteristics, in particular the intractable process dynamics, non-Gaussian distributions and missing value of the quality variables, which render significant difficulties in the development of high-accuracy soft sensor. Given such vexed issues, this paper proposes a dynamic soft sensing method called ‘semisupervised Bayesian hidden Markov model (SsBHMM)’. In the SsBHMM, a semisupervised fully Bayesian regressive model structure is first designed, which accounts for the process dynamics using first-order Markov chain with hidden variables (HVs) and deals with the non-Gaussianities by mixture of Gaussians. Moreover, based on variational inference an efficient training algorithm is developed to learn parameters of the SsBHMM, which mines both labeled and unlabeled data such that the issue of missing value of quality variables can be dealt with. The performance of the SsBHMM is evaluated by a numerical example and an industrial low-temperature transformation unit, through which the advantages and the feasibility of the SsBHMM have been demonstrated. • A novel soft sensor model ’SsBHMM’ for non-Gaussian and dynamic process is proposed. • A semisupervised efficient learning algorithm is developed to train the SsBHMM. • Promising application foreground of the SsBHMM is demonstrated for practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chenpingchang完成签到,获得积分10
1秒前
gy完成签到 ,获得积分10
1秒前
杨傲多完成签到,获得积分10
4秒前
大个应助seedcode采纳,获得10
6秒前
6秒前
科研通AI2S应助杨傲多采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
子车茗应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
7秒前
情怀应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
wwz应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
梁兆仪完成签到,获得积分20
8秒前
xiaozheng完成签到,获得积分10
10秒前
10秒前
六初完成签到 ,获得积分10
11秒前
唠叨的小王完成签到,获得积分10
12秒前
12秒前
13秒前
cjlinhunu发布了新的文献求助10
13秒前
天天快乐应助威武的迎曼采纳,获得10
14秒前
14秒前
OliverW完成签到,获得积分10
15秒前
空空发布了新的文献求助10
16秒前
16秒前
赘婿应助小语采纳,获得10
16秒前
18秒前
张静发布了新的文献求助10
18秒前
狂野砖头发布了新的文献求助10
18秒前
活泼的冬寒完成签到,获得积分10
19秒前
LHX发布了新的文献求助10
21秒前
调研昵称发布了新的文献求助30
21秒前
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163348
求助须知:如何正确求助?哪些是违规求助? 2814206
关于积分的说明 7903775
捐赠科研通 2473774
什么是DOI,文献DOI怎么找? 1317050
科研通“疑难数据库(出版商)”最低求助积分说明 631614
版权声明 602187