线粒体DNA
互补
生物
线粒体脑肌病
突变
遗传学
线粒体
肌阵挛性癫痫
分子生物学
线粒体肌病
症候群
呼吸链
突变体
基因
癫痫
神经科学
作者
Anne Chomyn,S. T. Lai,Rebecca M. Shakeley,Nereo Bresolin,G. Scarlato,Giuseppe Attardi
出处
期刊:PubMed
日期:1994-06-01
卷期号:54 (6): 966-74
被引量:35
摘要
In the present work, we demonstrate the possibility of using human blood platelets as mitochondrial donors for the repopulation of mtDNA-less (rho 0) cells. The noninvasive nature of platelet isolation, combined with the prolonged viability of platelet mitochondria and the simplicity and efficiency of the mitochondria-transfer procedure, has substantially increased the applicability of the rho 0 cell transformation approach for mitochondrial genetic analysis and for the study of mtDNA-linked diseases. This approach has been applied to platelets from several normal human individuals and one individual affected by the myoclonic-epilepsy-and-ragged-red-fibers (MERRF) encephalomyopathy. A certain variability in respiratory capacity was observed among the platelet-derived rho 0 cell transformants from a given normal subject, and it was shown to be unrelated to their mtDNA content. The results of sequential transfer of mitochondria from selected transformants into a rho 0 cell line different from the first rho 0 acceptor strongly suggest that this variability reflected, at least in part, differences in nuclear gene content and/or activity among the original recipient cells. A much greater variability in respiratory capacity was observed among the transformants derived from the MERRF patient and was found to be related to the presence and amount of the mitochondrial tRNALys mutation associated with the MERRF syndrome. An analysis of the relationship between proportion of mtDNA carrying the MERRF mutation and degree of respiratory activity in various transformants derived from the MERRF patient revealed an unusual complementation behavior of the tRNALys mutation, possibly reflecting the distribution of mutant mtDNA among the platelet mitochondria.
科研通智能强力驱动
Strongly Powered by AbleSci AI