Large‐scale profiling of metabolic dysregulation in ovarian cancer

卵巢癌 代谢组学 代谢途径 脂肪酸代谢 癌症 新陈代谢 癌症研究 生物 内科学 医学 生物信息学
作者
Chaofu Ke,Yan Hou,Haiyu Zhang,Lijun Fan,Tingting Ge,Bing Guo,Fan Zhang,Kai Yang,Jingtao Wang,Ge Lou,Kang Li
出处
期刊:International Journal of Cancer [Wiley]
卷期号:136 (3): 516-526 被引量:95
标识
DOI:10.1002/ijc.29010
摘要

Ovarian cancer is the leading cause of death in gynecologic malignancies. Profiling of endogenous metabolites has potential to identify changes caused by cancer and provide inspiring insights into cancer metabolism. To systematically investigate ovarian cancer metabolism, we performed metabolic profiling of 448 plasma samples related to epithelial ovarian cancer (EOC) based on ultra‐performance liquid chromatography mass spectrometry in both positive and negative modes. These unbiased metabolomic profiles could well distinguish EOC from benign ovarian tumor (BOT) and uterine fibroid (UF). Fifty‐three metabolites were identified as specific biomarkers for EOC, and this is the first report of piperine, 3‐indolepropionic acid, 5‐hydroxyindoleacetaldehyde and hydroxyphenyllactate as metabolic biomarkers of EOC. The AUC values of these metabolites for discriminating EOC from BOT/UF and early‐stage EOC from BOT/UF were 0.9100/0.9428 and 0.8385/0.8624, respectively. Meanwhile, our metabolites were able to distinguish early‐stage EOC from late‐stage EOC with an AUC of 0.8801. Importantly, analysis of dysregulated metabolic pathways extends our current understanding of EOC metabolism. Metabolic pathways in EOC patients are mainly characterized by abnormal phospholipid metabolism, altered l ‐tryptophan catabolism, aggressive fatty acid β‐oxidation and aberrant metabolism of piperidine derivatives. Together, these metabolic pathways provide a foundation to support cancer development and progression. In conclusion, our large‐scale plasma metabolomics study yielded fundamental insights into dysregulated metabolism in ovarian cancer, which could facilitate clinical diagnosis, therapy, prognosis and shed new lights on ovarian cancer pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
果ghj发布了新的文献求助10
2秒前
孙亦沈发布了新的文献求助10
2秒前
彭于晏应助寄居安采纳,获得10
5秒前
6秒前
7秒前
鲜蘑完成签到,获得积分10
8秒前
9秒前
9秒前
彭于晏应助眯眯眼的世界采纳,获得10
10秒前
小马甲应助shuan采纳,获得30
11秒前
hahhhah完成签到 ,获得积分10
11秒前
果ghj完成签到,获得积分10
11秒前
阳光莲小蓬完成签到,获得积分20
13秒前
幸福飞丹发布了新的文献求助30
13秒前
Akim应助月亮是甜的采纳,获得10
13秒前
14秒前
14秒前
大胆浩然应助丁叮采纳,获得10
17秒前
17秒前
狗儿吖发布了新的文献求助10
17秒前
Lh6610完成签到,获得积分0
19秒前
19秒前
19秒前
Owen应助yzy采纳,获得10
20秒前
20秒前
七哥发布了新的文献求助10
22秒前
ocean完成签到,获得积分10
22秒前
27秒前
28秒前
29秒前
小天发布了新的文献求助30
29秒前
李健应助科研通管家采纳,获得10
30秒前
共享精神应助科研通管家采纳,获得10
30秒前
劲秉应助科研通管家采纳,获得10
30秒前
完美世界应助科研通管家采纳,获得10
30秒前
8R60d8应助科研通管家采纳,获得10
30秒前
无餍应助科研通管家采纳,获得10
30秒前
Wait完成签到,获得积分10
30秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663