Time delay estimation in reverberant and low SNR environment by EMD based maximum likelihood method

混响 希尔伯特-黄变换 声纳 声学 信号(编程语言) 计算机科学 噪音(视频) 水下 信噪比(成像) 语音识别 电信 人工智能 白噪声 物理 地质学 海洋学 图像(数学) 程序设计语言
作者
B. Marxim Rahula Bharathi,A.R. Mohanty
出处
期刊:Measurement [Elsevier]
卷期号:137: 655-663 被引量:31
标识
DOI:10.1016/j.measurement.2019.01.096
摘要

In recent times, time delay estimation (TDE) has received significant practical importance in sonar, radar, GPS, and various other fields. In a passive sonar system, estimation of time delay for low frequency and low signal to noise (SNR) acoustic source is a difficult task. If the source and receivers are kept inside the reverberation environment, time delay estimation becomes more difficult because of sound source echo’s. This research work proposes a new TDE approach named empirical mode decomposition maximum likelihood time delay estimation (EMD ML TDE) method, for the low-frequency and low SNR underwater machinery acoustic signal in a reverberant environment. EMD ML TDE method is based on maximum likelihood (ML) method, and it is using empirical mode decomposition (EMD) denoising technique to estimate acoustic sound signal and noise from the noisy reverberant signal. The experimental results are provided that this new approach is better to estimate time delay in reverberant environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niu1发布了新的文献求助10
刚刚
1秒前
Danny完成签到,获得积分10
1秒前
Lsx完成签到 ,获得积分10
1秒前
又胖了发布了新的文献求助10
2秒前
2秒前
小小飞发布了新的文献求助20
3秒前
3秒前
3秒前
4秒前
wanci应助NorthWang采纳,获得10
4秒前
zhen完成签到,获得积分10
6秒前
ns发布了新的文献求助30
7秒前
8秒前
逐风完成签到,获得积分10
8秒前
无奈的酒窝完成签到,获得积分10
9秒前
9秒前
10秒前
blingbling发布了新的文献求助10
10秒前
今后应助SherlockLiu采纳,获得30
12秒前
daniel发布了新的文献求助10
12秒前
Jason应助温言采纳,获得20
13秒前
逐风发布了新的文献求助30
14秒前
hhzz发布了新的文献求助10
14秒前
日月轮回完成签到,获得积分10
15秒前
16秒前
Yimim发布了新的文献求助10
16秒前
小小li完成签到 ,获得积分10
16秒前
小蘑菇应助细腻晓露采纳,获得10
16秒前
又胖了完成签到,获得积分10
17秒前
Eva完成签到,获得积分10
18秒前
18秒前
喵喵喵完成签到,获得积分20
18秒前
独摇之完成签到,获得积分10
18秒前
怡然雁凡完成签到,获得积分10
18秒前
顾jiu完成签到,获得积分10
19秒前
科研通AI5应助热依汗古丽采纳,获得10
19秒前
优秀剑愁完成签到 ,获得积分10
19秒前
敏感网络发布了新的文献求助50
20秒前
院士人启动完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808