In Situ Metal Electroplating for High Energy Anode Free Sodium Battery

阳极 电池(电) 储能 电化学 阴极 材料科学 电镀 电流密度 集电器 比能量 石墨 电极 氧化物 化学工程 电解质 纳米技术 化学 电气工程 冶金 功率(物理) 热力学 工程类 图层(电子) 量子力学 物理 物理化学
作者
Marcin W. Orzech,Francesco Mazzali,Serena Margadonna
出处
期刊:Meeting abstracts 卷期号:MA2018-02 (5): 390-390
标识
DOI:10.1149/ma2018-02/5/390
摘要

The major advantage of sodium-ion batteries (SIBs) over lithium-ion is the lower cost of materials (Na vs Li and Al current collector replacing Cu); while the biggest drawback is the lower energy density (due to larger ionic radius and lower redox potential of Na + ). Considering the most common grid-scale energy storage Li-ion system: LiFePO 4 – Graphite (120 Wh/kg), simple replacement of Li and Cu with Na and Al, respectively, would results in only about 15% cost reduction. This means that Na-ion batteries need to have energy density higher than 102 Wh/kg in order to be competitive with LFP systems, which is hardly achievable in full cells comprising oxide-based cathodes and carbon anodes. Therefore, to commercialise SIBs for stationary energy storage, novel concept batteries with higher energy densities and considerably lower production costs need to be designed and developed. The concept of fabricating batteries in the discharged state with only an appropriate current collector (anode free) is an elegant method to achieve these aims. On the initial charge, reactive metal (Li or Na) is electroplated at the current collector, and so, during electrochemical cycling, the cell operates as a battery which contains only the amount of metal that is supplied by the positive electrode. Since Na metal has very high specific capacity (1166 mAh/g), the lowest possible working potential for SIBs and there is no anode material, the achievable energy density is extremely high. Nevertheless, in order to realise such systems we have to overcome several obstacles such as dendritic growth, nucleation potential, homogeneous plating as well as large volume changes. In this work we investigated anode free SIBs with particular focus on the battery’s components. We compared performance of several different current collectors and electrolytes. We also considered various cathode materials including conventional layered oxides or Prussian blue analogues. These materials differ in sodium storage mechanisms, working potentials and specific capacities as well as manufacturing costs. For instance, our tests of Na 0.90 Fe[Fe(CN) 6 ] cathode and carbon coated Al current collector showed outstanding capacity of ~120 mAh/g over 250 cycles (Fig. 1). The average discharge potential is 3.2 V, which results in remarkable energy density of 384 Wh/kg. This is only slightly lower than the energy density of LiMn 2 O 4 (410–492 Wh/kg) or LiFePO 4 (518–587 Wh/kg). However, Li-ion values are based only on active mass of oxide cathode and in full cell configurations the graphite anode would have to be taken into account. This is not the case for anode free SIBs and therefore the energy density is already much higher than state-of-the-art LIBs. The system showed also remarkable rate capabilities up to 20C discharge rate, resulting in power density reaching 11 kW/kg. Moreover, the utilisation of inexpensive Prussian Blue analogues instead of transition metal oxides would contribute to lowering the cost even further. In conclusion, electroplating anode free sodium ion batteries can overtake LIBs in both performance and economic factors, emerging as one of the most promising and viable technologies for medium to large scale energy storage applications. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰雪物语完成签到,获得积分20
1秒前
Jj完成签到,获得积分10
1秒前
王晓完成签到,获得积分10
2秒前
长安完成签到,获得积分10
3秒前
深情依霜完成签到,获得积分20
3秒前
隐形曼青应助震动的绿竹采纳,获得10
4秒前
JamesPei应助葛藟萦藤采纳,获得10
4秒前
云氲完成签到 ,获得积分10
5秒前
睡觉王完成签到 ,获得积分10
5秒前
恰恰完成签到,获得积分10
5秒前
冰糖葫芦娃完成签到,获得积分10
6秒前
小二郎应助酷炫的语梦采纳,获得10
6秒前
6秒前
xly完成签到,获得积分10
7秒前
cream发布了新的文献求助10
7秒前
hahah完成签到,获得积分10
8秒前
8秒前
哥屋恩完成签到,获得积分20
8秒前
wf完成签到,获得积分10
8秒前
Watson完成签到,获得积分10
9秒前
高贵路灯完成签到,获得积分10
9秒前
xiaoruixue完成签到,获得积分10
9秒前
侠女完成签到 ,获得积分10
10秒前
Yolo完成签到,获得积分10
10秒前
11秒前
fengjoy发布了新的文献求助10
12秒前
are完成签到,获得积分10
13秒前
Yolo发布了新的文献求助10
14秒前
14秒前
烟花应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
好困应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
14秒前
JamesPei应助科研通管家采纳,获得30
14秒前
Singularity应助Nancy采纳,获得10
15秒前
大气的画板完成签到 ,获得积分10
15秒前
16秒前
qiujiliang完成签到 ,获得积分10
17秒前
liuyq0501发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
CANCER DISCOVERY癌症研究的新前沿:中国科研领军人物的创新构想 中国专刊 500
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158693
求助须知:如何正确求助?哪些是违规求助? 2809927
关于积分的说明 7884596
捐赠科研通 2468681
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012