In Situ Metal Electroplating for High Energy Anode Free Sodium Battery

阳极 电池(电) 储能 电化学 阴极 材料科学 电镀 电流密度 集电器 比能量 石墨 电极 氧化物 化学工程 电解质 纳米技术 化学 电气工程 冶金 功率(物理) 热力学 工程类 图层(电子) 物理化学 物理 量子力学
作者
Marcin Wojciech Orzech,Francesco Mazzali,Serena Margadonna
出处
期刊:Meeting abstracts 卷期号:MA2018-02 (5): 390-390
标识
DOI:10.1149/ma2018-02/5/390
摘要

The major advantage of sodium-ion batteries (SIBs) over lithium-ion is the lower cost of materials (Na vs Li and Al current collector replacing Cu); while the biggest drawback is the lower energy density (due to larger ionic radius and lower redox potential of Na + ). Considering the most common grid-scale energy storage Li-ion system: LiFePO 4 – Graphite (120 Wh/kg), simple replacement of Li and Cu with Na and Al, respectively, would results in only about 15% cost reduction. This means that Na-ion batteries need to have energy density higher than 102 Wh/kg in order to be competitive with LFP systems, which is hardly achievable in full cells comprising oxide-based cathodes and carbon anodes. Therefore, to commercialise SIBs for stationary energy storage, novel concept batteries with higher energy densities and considerably lower production costs need to be designed and developed. The concept of fabricating batteries in the discharged state with only an appropriate current collector (anode free) is an elegant method to achieve these aims. On the initial charge, reactive metal (Li or Na) is electroplated at the current collector, and so, during electrochemical cycling, the cell operates as a battery which contains only the amount of metal that is supplied by the positive electrode. Since Na metal has very high specific capacity (1166 mAh/g), the lowest possible working potential for SIBs and there is no anode material, the achievable energy density is extremely high. Nevertheless, in order to realise such systems we have to overcome several obstacles such as dendritic growth, nucleation potential, homogeneous plating as well as large volume changes. In this work we investigated anode free SIBs with particular focus on the battery’s components. We compared performance of several different current collectors and electrolytes. We also considered various cathode materials including conventional layered oxides or Prussian blue analogues. These materials differ in sodium storage mechanisms, working potentials and specific capacities as well as manufacturing costs. For instance, our tests of Na 0.90 Fe[Fe(CN) 6 ] cathode and carbon coated Al current collector showed outstanding capacity of ~120 mAh/g over 250 cycles (Fig. 1). The average discharge potential is 3.2 V, which results in remarkable energy density of 384 Wh/kg. This is only slightly lower than the energy density of LiMn 2 O 4 (410–492 Wh/kg) or LiFePO 4 (518–587 Wh/kg). However, Li-ion values are based only on active mass of oxide cathode and in full cell configurations the graphite anode would have to be taken into account. This is not the case for anode free SIBs and therefore the energy density is already much higher than state-of-the-art LIBs. The system showed also remarkable rate capabilities up to 20C discharge rate, resulting in power density reaching 11 kW/kg. Moreover, the utilisation of inexpensive Prussian Blue analogues instead of transition metal oxides would contribute to lowering the cost even further. In conclusion, electroplating anode free sodium ion batteries can overtake LIBs in both performance and economic factors, emerging as one of the most promising and viable technologies for medium to large scale energy storage applications. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Edward完成签到,获得积分10
1秒前
调皮的醉山完成签到 ,获得积分10
3秒前
玛卡巴卡完成签到 ,获得积分10
3秒前
77完成签到,获得积分10
4秒前
jingguofu完成签到 ,获得积分10
6秒前
小黄豆完成签到,获得积分10
7秒前
10秒前
吴晨曦完成签到,获得积分10
11秒前
山羊不吃兔完成签到 ,获得积分10
12秒前
123完成签到,获得积分10
12秒前
静翕完成签到 ,获得积分10
13秒前
komisan完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
坚定寒松完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
1111完成签到 ,获得积分10
24秒前
秋秋完成签到,获得积分10
25秒前
青青完成签到 ,获得积分10
25秒前
完美世界应助科研通管家采纳,获得10
26秒前
共享精神应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
26秒前
Jasper应助慕容飞凤采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
顾城浪子完成签到,获得积分10
31秒前
有魅力胡萝卜完成签到,获得积分10
32秒前
七QI完成签到 ,获得积分10
33秒前
LIUJIE完成签到,获得积分10
34秒前
576-576完成签到 ,获得积分10
34秒前
smh完成签到 ,获得积分10
36秒前
李健应助有魅力胡萝卜采纳,获得10
36秒前
小武完成签到,获得积分10
36秒前
聂先生完成签到,获得积分10
40秒前
影像大侠完成签到,获得积分10
42秒前
xyzlancet完成签到,获得积分10
43秒前
MM完成签到 ,获得积分10
44秒前
唐唐完成签到,获得积分10
45秒前
WXyue完成签到 ,获得积分10
45秒前
耕牛热完成签到,获得积分10
46秒前
望凌烟完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869628
关于积分的说明 15108640
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536429
关于科研通互助平台的介绍 1494858