亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing

自编码 特征(语言学) 学习迁移 人工智能 人工神经网络 计算机科学 深度学习 对象(语法) 断层(地质) 模式识别(心理学) 机器学习 数据建模 传递函数 数据挖掘 工程类 哲学 语言学 数据库 地震学 地质学 电气工程
作者
Chuang Sun,Meng Ma,Zhibin Zhao,Shaohua Tian,Ruqiang Yan,Xuefeng Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:15 (4): 2416-2425 被引量:446
标识
DOI:10.1109/tii.2018.2881543
摘要

Deep learning with ability to feature learning and nonlinear function approximation has shown its effectiveness for machine fault prediction. While, how to transfer a deep network trained by historical failure data for prediction of a new object is rarely researched. In this paper, a deep transfer learning (DTL) network based on sparse autoencoder (SAE) is presented. In the DTL method, three transfer strategies, that is, weight transfer, transfer learning of hidden feature, and weight update, are used to transfer an SAE trained by historical failure data to a new object. By these strategies, prediction of the new object without supervised information for training is achieved. Moreover, the learned features by deep transfer network for the new object share joint and similar characteristic to that of historical failure data, which is beneficial to accurate prediction. Case study on remaining useful life (RUL) prediction of cutting tool is performed to validate effectiveness of the DTL method. An SAE network is first trained by run-to-failure data with RUL information of a cutting tool in an off-line process. The trained network is then transferred to a new tool under operation for on-line RUL prediction. The prediction result with high accuracy shows advantage of the DTL method for RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lance完成签到,获得积分10
3秒前
小二郎应助Nr采纳,获得10
7秒前
22秒前
传统的怀薇完成签到 ,获得积分10
26秒前
Nr发布了新的文献求助10
27秒前
科研通AI5应助无误采纳,获得10
30秒前
yuyu完成签到,获得积分10
36秒前
54秒前
无误发布了新的文献求助10
58秒前
FIN应助科研通管家采纳,获得10
1分钟前
袁雪蓓完成签到 ,获得积分10
1分钟前
番番完成签到,获得积分10
2分钟前
2分钟前
2分钟前
王立伟发布了新的文献求助10
2分钟前
2分钟前
CXC发布了新的文献求助10
2分钟前
NS发布了新的文献求助10
2分钟前
CXC完成签到,获得积分10
3分钟前
3分钟前
FIN应助科研通管家采纳,获得10
3分钟前
桐桐应助科研通管家采纳,获得30
3分钟前
lihongjie发布了新的文献求助10
3分钟前
在水一方应助lihongjie采纳,获得10
3分钟前
3分钟前
lihongjie发布了新的文献求助10
3分钟前
梅赛德斯奔驰完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
Beverly发布了新的文献求助10
4分钟前
TGOO完成签到 ,获得积分10
4分钟前
爆米花应助Beverly采纳,获得10
4分钟前
4分钟前
小付发布了新的文献求助10
4分钟前
HS完成签到,获得积分10
4分钟前
轻语完成签到 ,获得积分10
4分钟前
future完成签到 ,获得积分10
5分钟前
隐形曼青应助科研通管家采纳,获得10
5分钟前
ding应助科研通管家采纳,获得10
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767074
求助须知:如何正确求助?哪些是违规求助? 3311529
关于积分的说明 10158838
捐赠科研通 3026733
什么是DOI,文献DOI怎么找? 1661299
邀请新用户注册赠送积分活动 793951
科研通“疑难数据库(出版商)”最低求助积分说明 755878