亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification for plastic bottles recycling based on image recognition

人工智能 塑料瓶 瓶子 模式识别(心理学) 分类 不相交集 职位(财务) 计算机视觉 支持向量机 计算机科学 工程类 数学 算法 机械工程 财务 组合数学 经济
作者
Zhaokun Wang,Bin Peng,Yanjun Huang,Guanqun Sun
出处
期刊:Waste Management [Elsevier]
卷期号:88: 170-181 被引量:67
标识
DOI:10.1016/j.wasman.2019.03.032
摘要

Recycling of used plastic bottles is an important measure to protect the environment and save energy. Usually, bottles in different colors have different value for recycling. Classification of plastic bottles recycling based on image recognition during recycling is an effective way, where the position and color recognition are the key technologies. To classify the plastic bottles on the conveyor belt, their position relationships are firstly defined as three categories, i.e. disjoint, adjacent and overlapping. The disjoint ones can be easily identified by the ratio of concave and convex area based on their image. For the adjacent and overlapping bottles, a combination method called distance transformation and threshold segmentation is proposed to distinguish their position relationships. Once the adjacent bottles are identified, the method of concave point search based on convex hull will be used to separate the adjacent recycled bottles further. Then, the color of both the disjoint and adjacent bottles is identified because it is too complex and difficult to recognize color of and separate the overlapping bottles. In the aspect of color recognition, the colors of recycled bottles are divided into seven categories in the sorting process. Color features of the bottom section are used to represent the one of the recycled bottle because there may be a bottle cap and a label on the top and in the middle of the bottle, respectively, resulting in the wrong recognition. ReliefF algorithm is applied to select color features of recycled bottles and the color is identified by support vector machine (SVM) algorithm. The influence of training sample size on classification model is studied and the experimental results show that the accuracy of color recognition of recycled bottles reach 94.7%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Able完成签到,获得积分10
6秒前
9秒前
哈哈哈发布了新的文献求助10
11秒前
22秒前
码头整点薯条完成签到,获得积分10
23秒前
24秒前
24秒前
Owen应助科研通管家采纳,获得10
25秒前
27秒前
28秒前
观潮应助码头整点薯条采纳,获得10
33秒前
Jasper应助码头整点薯条采纳,获得10
38秒前
40秒前
45秒前
春宇浩然发布了新的文献求助10
52秒前
58秒前
roro熊完成签到 ,获得积分10
1分钟前
HYQ完成签到 ,获得积分10
1分钟前
JodieZhu完成签到,获得积分10
1分钟前
1分钟前
义气丹雪应助JodieZhu采纳,获得30
1分钟前
1分钟前
糟糕的颜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Wei发布了新的文献求助50
1分钟前
wggggggy发布了新的文献求助10
1分钟前
脑洞疼应助春宇浩然采纳,获得10
1分钟前
学术交流高完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
义气丹雪应助JodieZhu采纳,获得30
3分钟前
爆米花应助无情的琳采纳,获得10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724022
求助须知:如何正确求助?哪些是违规求助? 5283494
关于积分的说明 15299539
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616665
邀请新用户注册赠送积分活动 1566557
关于科研通互助平台的介绍 1523402