Classification for plastic bottles recycling based on image recognition

人工智能 塑料瓶 瓶子 模式识别(心理学) 分类 不相交集 职位(财务) 计算机视觉 支持向量机 计算机科学 工程类 数学 算法 机械工程 财务 组合数学 经济
作者
Zhaokun Wang,Bin Peng,Yanjun Huang,Guanqun Sun
出处
期刊:Waste Management [Elsevier]
卷期号:88: 170-181 被引量:67
标识
DOI:10.1016/j.wasman.2019.03.032
摘要

Recycling of used plastic bottles is an important measure to protect the environment and save energy. Usually, bottles in different colors have different value for recycling. Classification of plastic bottles recycling based on image recognition during recycling is an effective way, where the position and color recognition are the key technologies. To classify the plastic bottles on the conveyor belt, their position relationships are firstly defined as three categories, i.e. disjoint, adjacent and overlapping. The disjoint ones can be easily identified by the ratio of concave and convex area based on their image. For the adjacent and overlapping bottles, a combination method called distance transformation and threshold segmentation is proposed to distinguish their position relationships. Once the adjacent bottles are identified, the method of concave point search based on convex hull will be used to separate the adjacent recycled bottles further. Then, the color of both the disjoint and adjacent bottles is identified because it is too complex and difficult to recognize color of and separate the overlapping bottles. In the aspect of color recognition, the colors of recycled bottles are divided into seven categories in the sorting process. Color features of the bottom section are used to represent the one of the recycled bottle because there may be a bottle cap and a label on the top and in the middle of the bottle, respectively, resulting in the wrong recognition. ReliefF algorithm is applied to select color features of recycled bottles and the color is identified by support vector machine (SVM) algorithm. The influence of training sample size on classification model is studied and the experimental results show that the accuracy of color recognition of recycled bottles reach 94.7%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助Mengo采纳,获得10
1秒前
wjx发布了新的文献求助10
2秒前
wanghuan完成签到,获得积分10
2秒前
大牛顿完成签到,获得积分10
3秒前
搜集达人应助多加采纳,获得10
3秒前
李健的小迷弟应助周周采纳,获得10
4秒前
英俊的铭应助Ning采纳,获得10
4秒前
5秒前
5秒前
jikaku完成签到,获得积分10
6秒前
李健应助瑾瑜采纳,获得10
6秒前
yao完成签到,获得积分10
7秒前
AAAsun完成签到,获得积分10
7秒前
lawson完成签到,获得积分10
8秒前
Herisland完成签到 ,获得积分10
9秒前
可乐发布了新的文献求助10
10秒前
洗衣液发布了新的文献求助30
11秒前
11秒前
田様应助qujie采纳,获得10
14秒前
ren完成签到,获得积分10
14秒前
尽快毕业发布了新的文献求助20
15秒前
wjx发布了新的文献求助10
16秒前
雪碧没气完成签到,获得积分10
16秒前
罗沫沫发布了新的文献求助10
16秒前
等待的太阳完成签到,获得积分10
17秒前
17秒前
尤玉完成签到,获得积分10
19秒前
Ania99完成签到 ,获得积分10
19秒前
埮埮完成签到,获得积分10
20秒前
20秒前
芝士就是力量完成签到,获得积分10
20秒前
科研通AI5应助等待的太阳采纳,获得10
20秒前
Hxind完成签到,获得积分10
20秒前
古拉桑应助夏木南生采纳,获得10
21秒前
可乐完成签到,获得积分10
21秒前
21秒前
C991s发布了新的文献求助20
22秒前
22秒前
坚强亦丝应助太叔夜南采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512750
求助须知:如何正确求助?哪些是违规求助? 3095108
关于积分的说明 9226249
捐赠科研通 2789937
什么是DOI,文献DOI怎么找? 1530991
邀请新用户注册赠送积分活动 711247
科研通“疑难数据库(出版商)”最低求助积分说明 706673