亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Added Value of Radiomics on Mammography for Breast Cancer Diagnosis: A Feasibility Study

乳腺摄影术 逻辑回归 医学 乳腺癌 双雷达 人工智能 无线电技术 朴素贝叶斯分类器 乳房成像 数据集 放射科 机器学习 计算机科学 支持向量机 癌症 内科学
作者
Ning Mao,Ping Yin,Qinglin Wang,Meijie Liu,Jianjun Dong,Xuexi Zhang,Haizhu Xie,Nan Hong
出处
期刊:Journal of The American College of Radiology [Elsevier]
卷期号:16 (4): 485-491 被引量:73
标识
DOI:10.1016/j.jacr.2018.09.041
摘要

Abstract

Background

This study aimed to evaluate whether radiomics can improve the diagnostic performance of mammography compared with that obtained by experienced radiologists.

Methods

This retrospective study included 173 patients (with 74 benign and 99 malignant lesions) who underwent mammography examination before neoadjuvant chemotherapy. Radiomic features were extracted from the mammography image of each patient. Several preprocessing methods, including centering and normalization, were used along with statistical analysis to reduce and select radiomic features. Four machine learning algorithms, namely, support vector machine, logistic regression, K-nearest neighbor, and Bayes classification, were applied to construct a predictive model. An independent testing data set was used to validate the prediction ability of the model. The classification performance was compared with the diagnostic predictions of two breast radiologists who had access to the same mammography cases.

Results

A total of 51 radiomic features remained after the preprocessing. Logistic regression classification presented the best differentiation ability among the four regression models. The diagnostic accuracy, specificity, and sensitivity of the logistic regression model for the training data set were 0.978, 0.975, and 0.983, respectively. The diagnostic accuracy, specificity, and sensitivity for the testing data set were 0.886, 0.900, and 0.867, respectively. The accuracy, specificity, and sensitivity of the combined reading of the two radiologists were 0.772, 0.710, 0.862 in the training data set and 0.769, 0.695, 0.858 in the testing data set, respectively.

Conclusions

Mammography images could be captured and quantified by radiomics, which offers a good diagnostic ability for benign and malignant breast tumors and provides complementary information to radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月儿完成签到 ,获得积分10
1秒前
beidou应助felix采纳,获得50
5秒前
Yuying完成签到 ,获得积分10
10秒前
岸在海的深处完成签到 ,获得积分10
20秒前
yzthk完成签到 ,获得积分10
44秒前
wl完成签到,获得积分10
50秒前
orixero应助HappyStarCat采纳,获得10
53秒前
dada完成签到,获得积分10
1分钟前
1分钟前
发发发完成签到,获得积分10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助心随以动采纳,获得10
1分钟前
920713712完成签到,获得积分20
1分钟前
1分钟前
tly发布了新的文献求助30
1分钟前
梅者如西发布了新的文献求助10
1分钟前
爆米花应助920713712采纳,获得10
1分钟前
刹那mirai完成签到 ,获得积分10
1分钟前
李健应助梅者如西采纳,获得10
1分钟前
阿托伐他汀完成签到 ,获得积分10
1分钟前
giving完成签到 ,获得积分10
1分钟前
yygz0703完成签到 ,获得积分10
1分钟前
posh完成签到 ,获得积分10
1分钟前
2分钟前
十七发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
lsc发布了新的文献求助10
2分钟前
梅者如西发布了新的文献求助10
2分钟前
ninye发布了新的文献求助10
2分钟前
共享精神应助梅者如西采纳,获得10
2分钟前
从容芮完成签到,获得积分0
2分钟前
热心从凝完成签到,获得积分20
2分钟前
2分钟前
踏实的访文完成签到,获得积分10
2分钟前
Ava应助nenoaowu采纳,获得10
2分钟前
tly发布了新的文献求助30
3分钟前
3分钟前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
The AASM International Classification of Sleep Disorders – Third Edition, Text Revision (ICSD-3-TR) 490
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3280277
求助须知:如何正确求助?哪些是违规求助? 2918475
关于积分的说明 8390285
捐赠科研通 2589550
什么是DOI,文献DOI怎么找? 1410911
科研通“疑难数据库(出版商)”最低求助积分说明 657856
邀请新用户注册赠送积分活动 639099