Added Value of Radiomics on Mammography for Breast Cancer Diagnosis: A Feasibility Study

乳腺摄影术 逻辑回归 医学 乳腺癌 双雷达 人工智能 无线电技术 朴素贝叶斯分类器 乳房成像 数据集 放射科 机器学习 计算机科学 支持向量机 癌症 内科学
作者
Ning Mao,Ping Yin,Qinglin Wang,Meijie Liu,Jianjun Dong,Xuexi Zhang,Haizhu Xie,Nan Hong
出处
期刊:Journal of The American College of Radiology [Elsevier BV]
卷期号:16 (4): 485-491 被引量:73
标识
DOI:10.1016/j.jacr.2018.09.041
摘要

Abstract

Background

This study aimed to evaluate whether radiomics can improve the diagnostic performance of mammography compared with that obtained by experienced radiologists.

Methods

This retrospective study included 173 patients (with 74 benign and 99 malignant lesions) who underwent mammography examination before neoadjuvant chemotherapy. Radiomic features were extracted from the mammography image of each patient. Several preprocessing methods, including centering and normalization, were used along with statistical analysis to reduce and select radiomic features. Four machine learning algorithms, namely, support vector machine, logistic regression, K-nearest neighbor, and Bayes classification, were applied to construct a predictive model. An independent testing data set was used to validate the prediction ability of the model. The classification performance was compared with the diagnostic predictions of two breast radiologists who had access to the same mammography cases.

Results

A total of 51 radiomic features remained after the preprocessing. Logistic regression classification presented the best differentiation ability among the four regression models. The diagnostic accuracy, specificity, and sensitivity of the logistic regression model for the training data set were 0.978, 0.975, and 0.983, respectively. The diagnostic accuracy, specificity, and sensitivity for the testing data set were 0.886, 0.900, and 0.867, respectively. The accuracy, specificity, and sensitivity of the combined reading of the two radiologists were 0.772, 0.710, 0.862 in the training data set and 0.769, 0.695, 0.858 in the testing data set, respectively.

Conclusions

Mammography images could be captured and quantified by radiomics, which offers a good diagnostic ability for benign and malignant breast tumors and provides complementary information to radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
理理完成签到 ,获得积分10
刚刚
卡卡完成签到,获得积分10
1秒前
123发布了新的文献求助10
2秒前
狮子座发布了新的文献求助10
2秒前
3秒前
情怀应助聆听雨采纳,获得10
3秒前
领导范儿应助卡卡采纳,获得10
5秒前
顾矜应助努力的学采纳,获得10
5秒前
共享精神应助干净的雪枫采纳,获得10
8秒前
酷波er应助ch采纳,获得10
8秒前
Benzhdw完成签到,获得积分10
8秒前
9秒前
李建科完成签到,获得积分10
9秒前
充电宝应助wdxmo采纳,获得10
11秒前
ni发布了新的文献求助10
11秒前
11秒前
夏天发布了新的文献求助10
12秒前
YCG发布了新的文献求助10
13秒前
77最可爱发布了新的文献求助10
14秒前
小二郎应助深竹月采纳,获得10
15秒前
16秒前
CipherSage应助ni采纳,获得10
16秒前
16秒前
江峰发布了新的文献求助10
16秒前
17秒前
ding应助ch采纳,获得10
18秒前
领导范儿应助于归采纳,获得10
18秒前
fanfei完成签到,获得积分10
19秒前
冷静茉莉完成签到 ,获得积分10
19秒前
fenghuo发布了新的文献求助10
21秒前
21秒前
糯米糍发布了新的文献求助10
21秒前
高yq发布了新的文献求助10
22秒前
23秒前
笑笑丶不爱笑完成签到,获得积分10
24秒前
25秒前
喻箴发布了新的文献求助10
26秒前
hai发布了新的文献求助10
28秒前
xiezhenghong发布了新的文献求助10
29秒前
安宇完成签到,获得积分20
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738204
求助须知:如何正确求助?哪些是违规求助? 3281655
关于积分的说明 10026312
捐赠科研通 2998455
什么是DOI,文献DOI怎么找? 1645277
邀请新用户注册赠送积分活动 782723
科研通“疑难数据库(出版商)”最低求助积分说明 749891