DISO: A rethink of Taylor diagram

均方误差 气候学 合并(版本控制) 标准差 相关系数 地质学 图表 环境科学 气象学 数学 计算机科学 地理 统计 情报检索
作者
Zengyun Hu,Xi Chen,Qiming Zhou,Deliang Chen,Jianfeng Li
出处
期刊:International Journal of Climatology [Wiley]
卷期号:39 (5): 2825-2832 被引量:104
标识
DOI:10.1002/joc.5972
摘要

Climate models use quantitative methods to simulate the interactions of the important drivers of climate system, to reveal the corresponding physical mechanisms, and to project the future climate dynamics among atmosphere, oceans, land surface and ice, such as regional climate models and global climate models. A comprehensive assessment of these climate models is important to identify their different overall performances, such as the accuracy of the simulated temperature and precipitation against the observed field. However, until now, the comprehensive performances of these models have not been quantified by a comprehensive index except the existed single statistical index, such as correlation coefficient ( r ), absolute error (AE), and the root‐mean‐square error (RMSE). To address this issue, therefore, in this study, a new comprehensive index Distance between Indices of Simulation and Observation (DISO) is developed to describe the overall performances of different models against the observed field quantitatively. This new index DISO is a merge of different statistical metrics including r , AE, and RMSE according to the distance between the simulated model and observed field in a three‐dimension space coordinate system. From the relationship between AE, RMSE, and RMS difference (RMSD) (i.e., standard deviation [ SD ] of bias time series), the new index also has the information of RMSD which is the statistical index in Taylor diagram. An example is applied objectively to display the applications of DISO and Taylor diagram in identifying the overall performances of different simulated models. Overall, with the strong physical characteristic of the distance in three dimensional space and the strict mathematical proof, the new comprehensive index DISO can convey the performances among different models. It can be applied in the comparison between different model data and in tracking changes in their performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大憨憨完成签到 ,获得积分10
1秒前
苹果王子6699完成签到 ,获得积分10
2秒前
Niyuw发布了新的文献求助10
2秒前
Xiaoxiao发布了新的文献求助20
4秒前
醉熏的鑫发布了新的文献求助10
5秒前
迅速海云完成签到,获得积分10
5秒前
5秒前
栗子的小母牛完成签到,获得积分10
6秒前
dh完成签到,获得积分10
9秒前
岩墩墩完成签到,获得积分10
10秒前
克姑美完成签到 ,获得积分10
13秒前
pangao完成签到,获得积分10
13秒前
ysssbq完成签到,获得积分10
15秒前
16秒前
上好佳完成签到 ,获得积分10
16秒前
大模型应助Yeong采纳,获得10
17秒前
量子星尘发布了新的文献求助30
17秒前
18秒前
123完成签到,获得积分10
18秒前
谢陈完成签到 ,获得积分10
19秒前
lilili完成签到,获得积分10
20秒前
21秒前
xiaoying发布了新的文献求助10
21秒前
SciGPT应助Eric_Liuzy采纳,获得10
22秒前
liu完成签到 ,获得积分10
22秒前
qixiaoqi发布了新的文献求助10
23秒前
24秒前
A溶大美噶发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
27秒前
28秒前
kevin发布了新的文献求助10
28秒前
满意的初南完成签到 ,获得积分10
29秒前
橙橙橙发布了新的文献求助10
29秒前
万能图书馆应助EVEN采纳,获得10
29秒前
29秒前
Yeong发布了新的文献求助10
30秒前
范先生发布了新的文献求助10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048