DISO: A rethink of Taylor diagram

均方误差 气候学 合并(版本控制) 标准差 相关系数 地质学 图表 环境科学 气象学 数学 计算机科学 地理 统计 情报检索
作者
Zengyun Hu,Xi Chen,Qiming Zhou,Deliang Chen,Jianfeng Li
出处
期刊:International Journal of Climatology [Wiley]
卷期号:39 (5): 2825-2832 被引量:104
标识
DOI:10.1002/joc.5972
摘要

Climate models use quantitative methods to simulate the interactions of the important drivers of climate system, to reveal the corresponding physical mechanisms, and to project the future climate dynamics among atmosphere, oceans, land surface and ice, such as regional climate models and global climate models. A comprehensive assessment of these climate models is important to identify their different overall performances, such as the accuracy of the simulated temperature and precipitation against the observed field. However, until now, the comprehensive performances of these models have not been quantified by a comprehensive index except the existed single statistical index, such as correlation coefficient ( r ), absolute error (AE), and the root‐mean‐square error (RMSE). To address this issue, therefore, in this study, a new comprehensive index Distance between Indices of Simulation and Observation (DISO) is developed to describe the overall performances of different models against the observed field quantitatively. This new index DISO is a merge of different statistical metrics including r , AE, and RMSE according to the distance between the simulated model and observed field in a three‐dimension space coordinate system. From the relationship between AE, RMSE, and RMS difference (RMSD) (i.e., standard deviation [ SD ] of bias time series), the new index also has the information of RMSD which is the statistical index in Taylor diagram. An example is applied objectively to display the applications of DISO and Taylor diagram in identifying the overall performances of different simulated models. Overall, with the strong physical characteristic of the distance in three dimensional space and the strict mathematical proof, the new comprehensive index DISO can convey the performances among different models. It can be applied in the comparison between different model data and in tracking changes in their performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
物理苟发布了新的文献求助10
1秒前
义气的惜海完成签到,获得积分10
1秒前
2秒前
念旧完成签到,获得积分10
2秒前
上官若男应助ml采纳,获得10
2秒前
zhzhzh发布了新的文献求助10
3秒前
3秒前
华仔应助欢呼的梦琪采纳,获得10
4秒前
5秒前
酷波er应助逗号先生采纳,获得10
8秒前
嘿嘿完成签到 ,获得积分10
8秒前
10秒前
养乐多发布了新的文献求助10
10秒前
李健应助呜呼啦呼采纳,获得10
10秒前
haifang完成签到,获得积分20
11秒前
FashionBoy应助hxh采纳,获得10
11秒前
孤独的电话给孤独的电话的求助进行了留言
12秒前
赵哈哈发布了新的文献求助10
12秒前
mgr完成签到,获得积分10
14秒前
小吉发布了新的文献求助10
15秒前
斯文败类应助嘎嘎嘎嘎采纳,获得10
15秒前
15秒前
是容与呀完成签到,获得积分10
18秒前
充电宝应助Darlin采纳,获得10
18秒前
19秒前
ShengShuoX完成签到,获得积分10
19秒前
20秒前
小山隹完成签到,获得积分10
21秒前
务实谷秋发布了新的文献求助10
22秒前
22秒前
逗号先生发布了新的文献求助10
23秒前
momeak完成签到,获得积分10
23秒前
23秒前
活力的彩虹完成签到 ,获得积分10
23秒前
24秒前
24秒前
25秒前
英俊的铭应助不吃折耳根采纳,获得10
25秒前
sukasuka发布了新的文献求助10
26秒前
wure10发布了新的文献求助10
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154081
求助须知:如何正确求助?哪些是违规求助? 2804993
关于积分的说明 7862902
捐赠科研通 2463094
什么是DOI,文献DOI怎么找? 1311144
科研通“疑难数据库(出版商)”最低求助积分说明 629460
版权声明 601821