Electronic-Structure Tuning of Water-Splitting Nanocatalysts

析氧 过电位 分解水 纳米材料基催化剂 电化学 催化作用 化学 材料科学 纳米技术 化学物理 化学工程 电极 物理化学 生物化学 光催化 工程类 有机化学
作者
Wenxiu Yang,Zi-Chen Wang,Weiyu Zhang,Shaojun Guo
出处
期刊:Trends in chemistry [Elsevier]
卷期号:1 (2): 259-271 被引量:118
标识
DOI:10.1016/j.trechm.2019.03.006
摘要

The critical challenge of electrochemical water splitting (EWS) is to overcome the slow kinetics and large overpotential of the oxygen evolution reaction (OER). Although hydrogen evolution activity in acidic solutions has been achieved to a sufficient extent, acceptable activity of alkaline hydrogen evolution still remains to be achieved. Strategies such as alloying, doping, interfacing, oxygen-vacancy engineering, and edge-defect engineering can selectively adjust the electronic structure of nanocatalysts for enhanced EWS catalysis. To date, significant effort has been expended toward constructing efficient EWS electrocatalysts from two promising avenues: low-Pt precious metal (LPM) catalysts or non-precious metal (NPM) catalysts. Electrochemical water splitting (EWS) represents a promising pathway for the storage of intermittent energies, such as wind and solar, in the form of hydrogen gas. The operational efficiency of EWS is governed in part by the electrocatalysts for two electrode reactions, namely, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, we highlight recent fundamental and experimental progress on tuning the electronic structure of electrocatalysts for enhanced EWS. In particular, we discuss several strategies to adjust the electronic structure of nanoelectrocatalysts, including: alloying, doping, interfacing, incorporating oxygen vacancies, and edge-defect engineering. Finally, some invigorating perspectives for future research directions are also provided. Electrochemical water splitting (EWS) represents a promising pathway for the storage of intermittent energies, such as wind and solar, in the form of hydrogen gas. The operational efficiency of EWS is governed in part by the electrocatalysts for two electrode reactions, namely, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, we highlight recent fundamental and experimental progress on tuning the electronic structure of electrocatalysts for enhanced EWS. In particular, we discuss several strategies to adjust the electronic structure of nanoelectrocatalysts, including: alloying, doping, interfacing, incorporating oxygen vacancies, and edge-defect engineering. Finally, some invigorating perspectives for future research directions are also provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Rachel完成签到,获得积分10
1秒前
独自受罪发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
白河发布了新的文献求助10
2秒前
3秒前
3秒前
5秒前
欣喜的秋蝶完成签到,获得积分10
6秒前
天堑无涯完成签到,获得积分20
6秒前
6秒前
7秒前
果子完成签到 ,获得积分10
8秒前
patience发布了新的文献求助10
9秒前
9秒前
大胆铃铛发布了新的文献求助10
9秒前
9秒前
9秒前
豆子完成签到,获得积分10
9秒前
年轻纸飞机完成签到 ,获得积分10
9秒前
Mic应助lyw采纳,获得10
10秒前
moub完成签到,获得积分20
10秒前
UNVS发布了新的文献求助10
10秒前
11秒前
跳跃的冰淇淋完成签到,获得积分20
11秒前
儒雅路人完成签到,获得积分10
13秒前
桐桐应助patience采纳,获得10
14秒前
14秒前
14秒前
传奇3应助苹果星星采纳,获得10
15秒前
zyq发布了新的文献求助10
15秒前
含蓄凝梦发布了新的文献求助10
15秒前
复杂的画板完成签到,获得积分10
15秒前
LLLight777发布了新的文献求助10
15秒前
李爱国应助Qian_Xu采纳,获得10
16秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
2哇哇哇发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424308
求助须知:如何正确求助?哪些是违规求助? 4538684
关于积分的说明 14163217
捐赠科研通 4455559
什么是DOI,文献DOI怎么找? 2443800
邀请新用户注册赠送积分活动 1434944
关于科研通互助平台的介绍 1412304