Amino Acid Encoding Methods for Protein Sequences: A Comprehensive Review and Assessment

编码(内存) 计算机科学 人工智能 水准点(测量) 氨基酸 人工神经网络 蛋白质测序 代表(政治) 机器学习 肽序列 计算生物学 生物 模式识别(心理学) 生物化学 基因 政治 法学 地理 政治学 大地测量学
作者
Xiaoyang Jing,Qiwen Dong,Daocheng Hong,Ruqian Lu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (6): 1918-1931 被引量:72
标识
DOI:10.1109/tcbb.2019.2911677
摘要

As the first step of machine-learning based protein structure and function prediction, the amino acid encoding play a fundamental role in the final success of those methods. Different from the protein sequence encoding, the amino acid encoding can be used in both residue-level and sequence-level prediction of protein properties by combining them with different algorithms. However, it has not attracted enough attention in the past decades, and there are no comprehensive reviews and assessments about encoding methods so far. In this article, we make a systematic classification and propose a comprehensive review and assessment for various amino acid encoding methods. Those methods are grouped into five categories according to their information sources and information extraction methodologies, including binary encoding, physicochemical properties encoding, evolution-based encoding, structure-based encoding, and machine-learning encoding. Then, 16 representative methods from five categories are selected and compared on protein secondary structure prediction and protein fold recognition tasks by using large-scale benchmark datasets. The results show that the evolution-based position-dependent encoding method PSSM achieved the best performance, and the structure-based and machine-learning encoding methods also show some potential for further application, the neural network based distributed representation of amino acids in particular may bring new light to this area. We hope that the review and assessment are useful for future studies in amino acid encoding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助yuan采纳,获得10
刚刚
lu发布了新的文献求助10
刚刚
现实的孤容完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
青蛙公主发布了新的文献求助10
2秒前
NexusExplorer应助高兴藏花采纳,获得10
2秒前
he完成签到,获得积分10
2秒前
3秒前
对手完成签到 ,获得积分10
3秒前
4秒前
4秒前
半斤发布了新的文献求助30
4秒前
共享精神应助嗒嗒嗒薇采纳,获得10
4秒前
Agernon应助Nan采纳,获得10
4秒前
5秒前
Zyl完成签到,获得积分10
5秒前
后笑晴发布了新的文献求助10
6秒前
耍酷的夏云应助东东呀采纳,获得10
6秒前
不晚完成签到,获得积分10
6秒前
小九的呀发布了新的文献求助10
6秒前
深情曼文发布了新的文献求助10
6秒前
6秒前
科目三应助啵乐乐采纳,获得10
8秒前
不晚发布了新的文献求助10
9秒前
9秒前
lax完成签到,获得积分10
10秒前
10秒前
liz关闭了liz文献求助
10秒前
稳重的御姐完成签到,获得积分10
10秒前
11秒前
我要住giao楼完成签到,获得积分10
12秒前
12秒前
ssassassassa完成签到 ,获得积分10
12秒前
科研通AI5应助田所浩二采纳,获得10
13秒前
Wiliam123321发布了新的文献求助30
14秒前
14秒前
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Covalent Organic Frameworks(没有ACS in fous 库的就不要上传了,不要下preview这个给我) 2000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3529396
求助须知:如何正确求助?哪些是违规求助? 3109254
关于积分的说明 9293258
捐赠科研通 2807059
什么是DOI,文献DOI怎么找? 1540854
邀请新用户注册赠送积分活动 717379
科研通“疑难数据库(出版商)”最低求助积分说明 710097