物理
反应扩散系统
扩散
极限(数学)
数学
扩散方程
有界函数
数学物理
运动(物理)
粒子(生态学)
作者
María del Mar González,Régis Monneau
出处
期刊:Discrete and Continuous Dynamical Systems
[American Institute of Mathematical Sciences]
日期:2011-10-01
卷期号:32 (4): 1255-1286
被引量:46
标识
DOI:10.3934/dcds.2012.32.1255
摘要
We consider a reaction-diffusion equation with a
half-Laplacian. In the case where the solution is independent on time,
the model reduces to the Peierls-Nabarro model describing dislocations
as transition layers in a phase field setting.
We introduce a suitable rescaling of the evolution equation, using a small
parameter $\varepsilon$. As $\varepsilon$ goes to zero, we show that the limit dynamics is
characterized by a system of ODEs describing the motion of particles with
two-body interactions. The interaction forces are in $1/x$ and correspond
to the well-known interaction between dislocations.
科研通智能强力驱动
Strongly Powered by AbleSci AI