Nanoscale monitoring of mitochondria and lysosome interactions for drug screening and discovery

溶酶体 药物发现 粒体自噬 计算生物学 共域化 线粒体 蛋白质组学 生物 药物开发 代谢组学 自噬 细胞器 细胞生物学 生物化学 药品 生物信息学 药理学 基因 细胞凋亡
作者
Qixin Chen,Xintian Shao,Zhiqi Tian,Yang Chen,Payel Mondal,Fei Liu,Fengshan Wang,Peixue Ling,Weijiang He,Kai Zhang,Zijian Guo,Jiajie Diao
出处
期刊:Nano Research [Springer Nature]
卷期号:12 (5): 1009-1015 被引量:49
标识
DOI:10.1007/s12274-019-2331-x
摘要

Technology advances in genomics, proteomics, and metabolomics largely expanded the pool of potential therapeutic targets. Compared with the in vitro setting, cell-based screening assays have been playing a key role in the processes of drug discovery and development. Besides the commonly used strategies based on colorimetric and cell viability, we reason that methods that capture the dynamic cellular events will facilitate optimal hit identification with high sensitivity and specificity. Herein, we propose a live-cell screening strategy using structured illumination microscopy (SIM) combined with an automated cell colocalization analysis software, Cellprofiler™, to screen and discover drugs for mitochondria and lysosomes interaction at a nanoscale resolution in living cells. This strategy quantitatively benchmarks the mitochondria-lysosome interactions such as mitochondria and lysosomes contact (MLC) and mitophagy. The automatic quantitative analysis also resolves fine changes of the mitochondria-lysosome interaction in response to genetic and pharmacological interventions. Super-resolution live-cell imaging on the basis of quantitative analysis opens up new avenues for drug screening and development by targeting dynamic organelle interactions at the nanoscale resolution, which could facilitate optimal hit identification and potentially shorten the cycle of drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助圆圈儿采纳,获得10
1秒前
我是老大应助圆圈儿采纳,获得10
1秒前
深情安青应助圆圈儿采纳,获得10
1秒前
今后应助圆圈儿采纳,获得10
1秒前
大模型应助圆圈儿采纳,获得10
1秒前
乐乐应助圆圈儿采纳,获得10
1秒前
英俊的铭应助圆圈儿采纳,获得10
1秒前
汉堡包应助圆圈儿采纳,获得10
1秒前
英俊的铭应助圆圈儿采纳,获得10
2秒前
xpqiu完成签到,获得积分10
4秒前
tjyangbo发布了新的文献求助10
5秒前
6秒前
TheYu完成签到,获得积分10
6秒前
D33sama完成签到,获得积分10
8秒前
9秒前
YU完成签到,获得积分10
10秒前
10秒前
窦房结完成签到 ,获得积分10
11秒前
11秒前
汶溢完成签到,获得积分10
12秒前
阿皮完成签到,获得积分10
12秒前
13秒前
怡然的弱完成签到 ,获得积分10
14秒前
shanbaibai发布了新的文献求助10
14秒前
寒月如雪发布了新的文献求助10
15秒前
天真的芒果完成签到,获得积分10
16秒前
annie2D发布了新的文献求助10
17秒前
17秒前
gt发布了新的文献求助10
17秒前
128关闭了128文献求助
18秒前
细心伟宸发布了新的文献求助30
18秒前
18秒前
Yi完成签到,获得积分10
20秒前
21秒前
ChandlerZB完成签到,获得积分10
22秒前
Cheung2121发布了新的文献求助10
22秒前
25秒前
花花花花完成签到,获得积分20
25秒前
26秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267535
求助须知:如何正确求助?哪些是违规求助? 2906979
关于积分的说明 8340317
捐赠科研通 2577592
什么是DOI,文献DOI怎么找? 1401153
科研通“疑难数据库(出版商)”最低求助积分说明 655000
邀请新用户注册赠送积分活动 633967