Study on hyperspectral detection and identification of invisible damage on kiwifruit by deep learning

高光谱成像 人工智能 深度学习 主成分分析 模式识别(心理学) 计算机科学 人工神经网络 Python(编程语言) 试验装置 计算机视觉 操作系统
作者
Yanxiang Wang,Yan Zhang,Chengya Yang,Qinglei Meng,Jing Shang
出处
期刊:Fifth Symposium on Novel Optoelectronic Detection Technology and Application 被引量:1
标识
DOI:10.1117/12.2521787
摘要

Aiming at the problem that kiwifruit invisible damage is difficult to detect and identify by conventional detection methods, this paper proposes to use the visible near-infrared hyperspectral imaging technology to detect the identify and identify models based on deep learning VGG-16 neural network. Detection and recognition of hyperspectral images of kiwifruit invisible damage. The network is implemented by the caffe framework and python and is a 16-layer deep learning neural network. The reflection spectroscopy images of 50 kiwifruit samples were obtained at wavelengths of 400-1000 nm. According to whether they were subjected to invisible damage, they were classified into invisible damage and undamage, with 40 and 10 samples respectively. The training set and the test set are used to obtain the implicit damage discriminant model by using the principal component analysis image obtained from the spectral data as the input image of deep learning. The experimental results show that the highest accurate recognition rate reaches 100% and has a good recognition effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助乐观化蛹采纳,获得10
2秒前
2秒前
ton发布了新的文献求助10
2秒前
LHY完成签到,获得积分10
2秒前
3秒前
wxaaaa完成签到,获得积分10
4秒前
5秒前
熄熄完成签到 ,获得积分10
5秒前
Jasper应助LinWu采纳,获得30
6秒前
maofeng完成签到,获得积分10
6秒前
柒夏完成签到,获得积分10
7秒前
7秒前
Lucas应助胖大米采纳,获得10
8秒前
Lucas应助WMR采纳,获得10
8秒前
puzhongjiMiQ完成签到,获得积分10
9秒前
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
有趣的桃完成签到,获得积分10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
123a应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得30
10秒前
10秒前
DAOXIAN发布了新的文献求助10
11秒前
夕夜完成签到,获得积分10
11秒前
星辰大海应助崔宏玺采纳,获得10
11秒前
13秒前
李剑鸿完成签到,获得积分10
14秒前
搞怪冷之发布了新的文献求助10
15秒前
微笑的语芙完成签到,获得积分10
15秒前
科研通AI6应助SAL采纳,获得10
15秒前
18秒前
ok123完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430727
求助须知:如何正确求助?哪些是违规求助? 4543827
关于积分的说明 14189399
捐赠科研通 4462258
什么是DOI,文献DOI怎么找? 2446490
邀请新用户注册赠送积分活动 1437891
关于科研通互助平台的介绍 1414544