已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Performance Improvement of Motor-Imagery BCI Using Multi-Mental Tasks

作者
Ryo Takahashi,Hisaya Tanaka
出处
期刊:International symposium on affective science and engineering [Japan Society of Kansei Engineering]
卷期号:ISASE2019: 1-4 被引量:1
标识
DOI:10.5057/isase.2019-c000038
摘要

We studied a motor-imagery brain-computer interface (MI-BCI). An MI-BCI is an interface that allows a computer to be operated by changes in brain activity that occurs when the operator imagines moving a body part. For example, with MI-BCI it is possible to assign left-hand motor-imagery to power an ON/OFF command. One of the problems with MI-BCI is its low performance, especially since MI-BCI has few commands. We aimed to improve the performance of MI-BCI by adding to the number of commands. Currently, MI-BCI has four commands based on “left hand,” “right hand,” “legs,” and “tongue” motor imagery. Therefore, we attempted to add to the number of MI-BCI commands by classifying eight kinds of brain motor-imagery activity: “no imagery,” “left hand,” “right hand,” “legs,” “both hands,” “left hand + legs,” “right hand + legs,” and “both hands + legs.” Motor imagery that involves multiple body parts, for example, “both hands,” is referred to as a multi-mental task. Multi-mental tasks involve a combination of simultaneous motor imagery, for example including the left and right hands and the legs. This makes it possible to increase the number of commands to 2N (where N is the number of body parts). Eighteen healthy males in their twenties participated in this study. The use of multi-mental tasks enabled us to improve MI-BCI performance in two out of three subjects. Multi-mental tasks can be used to add choice to MI tasks. Performance improvements using an MI-BCI were made possible by choosing MI tasks associated with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助小鱼采纳,获得10
刚刚
1秒前
wisteety发布了新的文献求助10
1秒前
小马甲应助勤奋曼雁采纳,获得10
1秒前
wuzhizhiya完成签到,获得积分10
2秒前
2秒前
gcy完成签到,获得积分10
2秒前
雪白的硬币完成签到,获得积分10
4秒前
蒜头完成签到,获得积分10
4秒前
英姑应助呵呵咯咯哒采纳,获得10
7秒前
爆米花应助新奇采纳,获得10
8秒前
研友_VZG7GZ应助zoe采纳,获得10
10秒前
11秒前
11秒前
11秒前
慕青应助jovrtic采纳,获得10
13秒前
IIIris发布了新的文献求助30
13秒前
葛运年完成签到,获得积分10
13秒前
15秒前
烂漫迎波发布了新的文献求助10
16秒前
善学以致用应助葛运年采纳,获得10
17秒前
所所应助掌柜采纳,获得10
17秒前
勤奋曼雁发布了新的文献求助10
17秒前
研友_Z7XoR8发布了新的文献求助10
18秒前
19秒前
EED完成签到 ,获得积分10
21秒前
21秒前
陈木子发布了新的文献求助10
22秒前
鹤鸣完成签到 ,获得积分10
22秒前
大模型应助naivete采纳,获得10
23秒前
26秒前
掌柜完成签到,获得积分10
27秒前
29秒前
zzz发布了新的文献求助10
30秒前
茜茜大王完成签到,获得积分10
30秒前
汉堡包应助西红柿炒鸡蛋采纳,获得10
30秒前
陈木子完成签到,获得积分10
30秒前
31秒前
32秒前
啊啊啊完成签到 ,获得积分10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133652
求助须知:如何正确求助?哪些是违规求助? 2784626
关于积分的说明 7767874
捐赠科研通 2439828
什么是DOI,文献DOI怎么找? 1297069
科研通“疑难数据库(出版商)”最低求助积分说明 624840
版权声明 600791