Process optimization for CD4+ and CD8+ T cell formulation and cryopreservation

低温保存 男科 孵化 CD8型 化学 免疫学 医学 生物 免疫系统 生物化学 细胞生物学 胚胎
作者
Alireza Abazari,S.D. Stevens,Brian J. Hawkins,Ajith Mathew,Luca Castelli
出处
期刊:Cytotherapy [Elsevier]
卷期号:21 (5): S42-S42
标识
DOI:10.1016/j.jcyt.2019.03.383
摘要

Background & Aim Cellular therapies are living drugs that have proven highly effective in the treatment of a broad range of human ailments. Logistical considerations for manufacturing living drugs necessitate incorporation of strategies to preserve their potency and efficacy. Many commercialization models employ a frozen cell product to be delivered to the clinic and stored, thawed and infused into patients on demand. Factors influencing post-cryopreservation cell viability and function include, but are not limited to, the selection of an appropriate biopreservation solution and cryoprotective agents, pre-freeze processing time, the temperature of cryomedia addition, ice nucleation temperature, and freezing and warming rates. Methods, Results & Conclusion In this study, CD4+ and CD8+ human T-cells from healthy donors were isolated from fresh PBMC (isolated by using CD4- or CD8-magnetically labelled microbeads) and cryopreserved separately at ∼ 20e6 cells/mL in either a home-brew formulation (10% DMSO, 20% Normosol, and 20% of a 25% Human Serum Albumin solution), or in commercially-available, serum-free, protein-free CryoStor® (BioLife Solutions, Bothell, WA) with 5% v/v or 10% v/v DMSO (CryoStor CS5, and CryoStor CS10, respectively). The cells were subject to varying pre-freeze incubation times at 2-8°C before the freezing process. The vials containing 1 mL of the cell suspension were placed inside a Mr. Frosty type device and were placed at -80°C for a minimum of 2 hours before transfer to LN2. On thaw, cells were processed using different thawing practices (fast vs. slow, and cold vs. warm dilution, among others). Post-thaw cellular viability and count was assessed using the NC-3000 imaging cytometer (ChemoMetec, Denmark) immediately post-thaw. To investigate delayed onset cell death, thawed samples were cultured in complete growth medium (RPMI+ 10%FBS) and cell viability was assessed at 24 h and 48 h post-thaw. Mitochondrial membrane potential was assessed to investigate the potential of this assay as a predictive analytic for delayed onset cell death. Our results suggest that cryopreservation media formulation and post-thaw dilution practice can significantly influence cell viability and recovery, and demonstrate how these parameters contribute to increased variability in observed post-thaw results. Our findings indicate that optimization of the cryopreservation process should be a major focus during early development as a practical means to improve the clinical efficacy of cellular therapies. Cellular therapies are living drugs that have proven highly effective in the treatment of a broad range of human ailments. Logistical considerations for manufacturing living drugs necessitate incorporation of strategies to preserve their potency and efficacy. Many commercialization models employ a frozen cell product to be delivered to the clinic and stored, thawed and infused into patients on demand. Factors influencing post-cryopreservation cell viability and function include, but are not limited to, the selection of an appropriate biopreservation solution and cryoprotective agents, pre-freeze processing time, the temperature of cryomedia addition, ice nucleation temperature, and freezing and warming rates. In this study, CD4+ and CD8+ human T-cells from healthy donors were isolated from fresh PBMC (isolated by using CD4- or CD8-magnetically labelled microbeads) and cryopreserved separately at ∼ 20e6 cells/mL in either a home-brew formulation (10% DMSO, 20% Normosol, and 20% of a 25% Human Serum Albumin solution), or in commercially-available, serum-free, protein-free CryoStor® (BioLife Solutions, Bothell, WA) with 5% v/v or 10% v/v DMSO (CryoStor CS5, and CryoStor CS10, respectively). The cells were subject to varying pre-freeze incubation times at 2-8°C before the freezing process. The vials containing 1 mL of the cell suspension were placed inside a Mr. Frosty type device and were placed at -80°C for a minimum of 2 hours before transfer to LN2. On thaw, cells were processed using different thawing practices (fast vs. slow, and cold vs. warm dilution, among others). Post-thaw cellular viability and count was assessed using the NC-3000 imaging cytometer (ChemoMetec, Denmark) immediately post-thaw. To investigate delayed onset cell death, thawed samples were cultured in complete growth medium (RPMI+ 10%FBS) and cell viability was assessed at 24 h and 48 h post-thaw. Mitochondrial membrane potential was assessed to investigate the potential of this assay as a predictive analytic for delayed onset cell death. Our results suggest that cryopreservation media formulation and post-thaw dilution practice can significantly influence cell viability and recovery, and demonstrate how these parameters contribute to increased variability in observed post-thaw results. Our findings indicate that optimization of the cryopreservation process should be a major focus during early development as a practical means to improve the clinical efficacy of cellular therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYj发布了新的文献求助20
刚刚
1秒前
1秒前
卟茨卟茨完成签到,获得积分10
3秒前
yu发布了新的文献求助10
4秒前
4秒前
充电宝应助星落枝头采纳,获得10
5秒前
Hello应助Queena采纳,获得10
5秒前
7秒前
在水一方应助Lee采纳,获得10
7秒前
8秒前
8秒前
啦啦啦啦发布了新的文献求助10
8秒前
漂亮的凛应助文件撤销了驳回
9秒前
mc发布了新的文献求助10
10秒前
若离发布了新的文献求助10
10秒前
xyi发布了新的文献求助10
11秒前
yu完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
小熊完成签到,获得积分10
13秒前
15秒前
活泼傲之完成签到,获得积分10
16秒前
16秒前
小蘑菇应助tao采纳,获得10
16秒前
17秒前
星落枝头发布了新的文献求助10
18秒前
Ava应助zz采纳,获得10
19秒前
Joyce完成签到,获得积分10
19秒前
19秒前
解惑大师发布了新的文献求助10
20秒前
伊比发布了新的文献求助10
20秒前
xxfsx应助Zzz采纳,获得20
20秒前
乒乓完成签到,获得积分10
21秒前
小武发布了新的文献求助10
21秒前
2号完成签到 ,获得积分10
22秒前
22秒前
小二郎应助科研小蛀虫采纳,获得10
22秒前
李爱国应助卿君采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436160
求助须知:如何正确求助?哪些是违规求助? 4548217
关于积分的说明 14212695
捐赠科研通 4468449
什么是DOI,文献DOI怎么找? 2449020
邀请新用户注册赠送积分活动 1439955
关于科研通互助平台的介绍 1416594