间皮细胞
CX3CR1型
CX3CL1型
纤维化
趋化因子
癌症研究
炎症
转化生长因子
免疫学
腹膜
病理
医学
间皮
趋化因子受体
内科学
作者
Alexandra Helmke,Johannes Nordlohne,Michael S. Balzer,Lei Dong,Song Rong,Marcus Hiß,Nelli Shushakova,Hermann Haller,Sibylle von Vietinghoff
标识
DOI:10.1016/j.kint.2018.12.030
摘要
Peritoneal dialysis (PD) is limited by chronic fibrotic remodeling of the peritoneal wall, a transforming growth factor-β (TGF-β)-mediated process. The fractalkine (CX3CL1) receptor CX3CR1 is expressed on macrophages and monocytes, where it is a marker of TGFβ expression. Detection of its ligand CX3CL1 on the peritoneal mesothelium led us to hypothesize a pathophysiologic role of CX3CL1-CX3CR1 interaction in peritoneal fibrosis. We found that CX3CL1 was expressed on peritoneal mesothelial cells from PD patients and in a murine PD model. CX3CR1, mostly expressed on macrophages in the peritoneal wall, promoted fibrosis induced by chronic dialysate exposure in the mouse model. Our data suggest a positive feedback loop whereby direct interaction with CX3CR1-expressing macrophages promotes mesothelial expression of CX3CL1 and TGFβ expression. In turn, TGFβ upregulates CX3CR1 in murine and human monocytic cells. Upstream, macrophage cytokines including interleukin-1β (IL-1β) promote mesothelial CX3CR1 and TGFβ expression, providing a starting point for CX3CL1-CX3CR1 interaction. IL-1β expression was enhanced by exposure to dialysate both in vitro and in the mouse models. Our data suggest that macrophage-mesothelial cell crosstalk through CX3CR1-CX3CL1 interaction enhances mesothelial TGFβ production, promoting peritoneal fibrosis in response to dialysate exposure. This interaction could be a novel therapeutic target in PD-associated chronic peritoneal fibrosis. Peritoneal dialysis (PD) is limited by chronic fibrotic remodeling of the peritoneal wall, a transforming growth factor-β (TGF-β)-mediated process. The fractalkine (CX3CL1) receptor CX3CR1 is expressed on macrophages and monocytes, where it is a marker of TGFβ expression. Detection of its ligand CX3CL1 on the peritoneal mesothelium led us to hypothesize a pathophysiologic role of CX3CL1-CX3CR1 interaction in peritoneal fibrosis. We found that CX3CL1 was expressed on peritoneal mesothelial cells from PD patients and in a murine PD model. CX3CR1, mostly expressed on macrophages in the peritoneal wall, promoted fibrosis induced by chronic dialysate exposure in the mouse model. Our data suggest a positive feedback loop whereby direct interaction with CX3CR1-expressing macrophages promotes mesothelial expression of CX3CL1 and TGFβ expression. In turn, TGFβ upregulates CX3CR1 in murine and human monocytic cells. Upstream, macrophage cytokines including interleukin-1β (IL-1β) promote mesothelial CX3CR1 and TGFβ expression, providing a starting point for CX3CL1-CX3CR1 interaction. IL-1β expression was enhanced by exposure to dialysate both in vitro and in the mouse models. Our data suggest that macrophage-mesothelial cell crosstalk through CX3CR1-CX3CL1 interaction enhances mesothelial TGFβ production, promoting peritoneal fibrosis in response to dialysate exposure. This interaction could be a novel therapeutic target in PD-associated chronic peritoneal fibrosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI