亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Charge separation via asymmetric illumination in photocatalytic Cu2O particles

光催化 表面光电压 材料科学 载流子 辐照 粒子(生态学) 光化学 纳米技术 化学物理 光电子学 催化作用 化学 物理 地质学 海洋学 量子力学 核物理学 生物化学 光谱学
作者
Ruotian Chen,Shan Pang,Hongyu An,Jian Zhu,Sheng Ye,Yuying Gao,Fengtao Fan,Can Li
出处
期刊:Nature Energy [Springer Nature]
卷期号:3 (8): 655-663 被引量:394
标识
DOI:10.1038/s41560-018-0194-0
摘要

Solar-driven photocatalytic reactions provide a potential route to sustainable fuels. These processes rely on the effective separation of photogenerated charges, and therefore understanding and exploring the driving force for charge separation is key to improving the photocatalytic performance. Here, using surface photovoltage microscopy, we demonstrate that the photogenerated charges can be separated effectively in a high-symmetry Cu2O photocatalyst particle by asymmetric light irradiation. The holes and electrons are transferred to the illuminated and shadow regions, respectively, of a single photocatalytic particle. Quantitative results show that the intrinsic difference between electron and hole mobilities enables a diffusion-controlled charge separation process, which is stronger than that caused by conventional built-in electric fields (40 mV versus 10 mV). Based on the findings, we assemble spatially separated redox co-catalysts on a single photocatalytic particle and, in doing so, enhance the performance for a model photocatalytic reaction by 300%. These findings highlight the driving force caused by charge mobility differences and the use of asymmetric light illumination for charge separation in photocatalysis. Photocatalysts use light to drive chemical reactions; the effective spatial separation of photogenerated charges is key to their performance in solar energy conversion. Here, using surface photovoltage microscopy, the authors show that charges can be separated in photocatalytic particles by asymmetric light irradiation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
8秒前
12秒前
辛勤夜柳完成签到,获得积分10
13秒前
杰老爷发布了新的文献求助10
24秒前
117发布了新的文献求助10
27秒前
xky200125完成签到 ,获得积分10
32秒前
我是老大应助wq采纳,获得10
37秒前
57秒前
cling发布了新的文献求助10
1分钟前
1分钟前
多乐多发布了新的文献求助10
1分钟前
1分钟前
Haim4完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
美满尔蓝完成签到,获得积分10
2分钟前
木棉发布了新的文献求助10
2分钟前
2分钟前
无极微光应助刘言采纳,获得20
2分钟前
凡尔赛老痘完成签到,获得积分10
2分钟前
guoguo82完成签到,获得积分10
2分钟前
3分钟前
开放道天发布了新的文献求助10
3分钟前
3分钟前
3分钟前
赘婿应助Mystic采纳,获得10
3分钟前
3分钟前
3分钟前
Mystic发布了新的文献求助10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664293
求助须知:如何正确求助?哪些是违规求助? 4860543
关于积分的说明 15107502
捐赠科研通 4822814
什么是DOI,文献DOI怎么找? 2581760
邀请新用户注册赠送积分活动 1535979
关于科研通互助平台的介绍 1494205