已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel deep output kernel learning method for bearing fault structural diagnosis

模式识别(心理学) 断层(地质) 方位(导航) 故障检测与隔离 支持向量机 卷积神经网络 算法 人工神经网络 滚动轴承 核(代数) 特征(语言学) 特征向量
作者
Wentao Mao,Wushi Feng,Xihui Liang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:117: 293-318 被引量:69
标识
DOI:10.1016/j.ymssp.2018.07.034
摘要

Abstract In recent years, machine learning techniques have been proved a promising tool for bearing fault diagnosis. However, in the traditional machine learning-based diagnosis methods, the fault features tend to be relatively simple and couldn’t work well for different fault type once a specific feature extraction method is determined. Meanwhile, although deep learning techniques can adaptively extract more representative features from bearing fault data, they are generally computationally expensive with slow convergence speed. Even if some deep learning algorithms like Multi-Layer Extreme Learning Machine (ML-ELM) can get fast training speed by means of non-tuned training strategy, they are inevitably of randomness to some extents. To solve this problem, a new deep learning method called deep output kernel learning is proposed in this paper to conduct collaborative diagnosis of multiple bearing fault types. The initial motivation is using the structural domain information among multiple bearing fault types to improve the diagnosis model’s generalization ability and robustness. By adopting ML-ELM as baseline algorithm, this paper firstly utilizes autoencoder to adaptively extract deep features, and then uses them to construct an objective function with output kernel regularizer. Finally, after solving this optimization problem, an output kernel matrix is obtained, and with this matrix, the final diagnosis model is built by fusing the multiple outputs of fault classifier. Experimental results on CWRU and IMS bearing data sets show that, compared to one state-of-the-art signal analysis method and eight typical machine learning-based diagnosis methods including four shallow learning algorithms and four deep learning algorithms, the proposed method can effectively improve the accuracy of bearing fault diagnosis in an acceptable time. Moreover, the results from the Kruskal-Wallis Test also indicate the proposed method has good numerical stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北觅完成签到 ,获得积分10
1秒前
傅家庆完成签到 ,获得积分10
1秒前
Riley发布了新的文献求助30
2秒前
LAN完成签到,获得积分10
5秒前
坐忘完成签到,获得积分10
5秒前
胡图图啦啦完成签到 ,获得积分10
13秒前
失眠的怀柔完成签到 ,获得积分10
16秒前
明亮不乐完成签到,获得积分20
25秒前
26秒前
蓦然回首发布了新的文献求助10
27秒前
在水一方应助archer01采纳,获得10
31秒前
小二郎应助科研通管家采纳,获得10
32秒前
wanci应助科研通管家采纳,获得10
32秒前
乐乐应助科研通管家采纳,获得10
32秒前
乐乐应助科研通管家采纳,获得10
32秒前
小林太郎应助科研通管家采纳,获得30
32秒前
Shumin发布了新的文献求助10
32秒前
99v587完成签到,获得积分10
35秒前
zjspidany发布了新的文献求助10
36秒前
36秒前
魁梧的盼望完成签到 ,获得积分10
40秒前
所所应助蓦然回首采纳,获得10
41秒前
赘婿应助Mian采纳,获得10
41秒前
研友_8DAv0L发布了新的文献求助10
42秒前
42秒前
42秒前
碳酸芙兰发布了新的文献求助10
45秒前
mmyhn发布了新的文献求助10
47秒前
研友_8DAv0L完成签到,获得积分10
49秒前
vsvsgo完成签到,获得积分20
49秒前
顺利凡阳完成签到 ,获得积分10
51秒前
pooppoap完成签到,获得积分10
52秒前
qq1203817826完成签到,获得积分20
56秒前
58秒前
碳酸芙兰完成签到,获得积分10
58秒前
华华发布了新的文献求助10
59秒前
鹿lu完成签到,获得积分20
1分钟前
LYL完成签到,获得积分10
1分钟前
领导范儿应助qq1203817826采纳,获得20
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538859
求助须知:如何正确求助?哪些是违规求助? 3116572
关于积分的说明 9325954
捐赠科研通 2814530
什么是DOI,文献DOI怎么找? 1546875
邀请新用户注册赠送积分活动 720659
科研通“疑难数据库(出版商)”最低求助积分说明 712145