Adversarial Stain Transfer for Histopathology Image Analysis

人工智能 计算机科学 模式识别(心理学) 规范化(社会学) 分割 图像分割 污渍 计算机视觉 判别式 分类器(UML) 病理 人类学 医学 染色 社会学
作者
Aïcha BenTaieb,Ghassan Hamarneh
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (3): 792-802 被引量:227
标识
DOI:10.1109/tmi.2017.2781228
摘要

It is generally recognized that color information is central to the automatic and visual analysis of histopathology tissue slides. In practice, pathologists rely on color, which reflects the presence of specific tissue components, to establish a diagnosis. Similarly, automatic histopathology image analysis algorithms rely on color or intensity measures to extract tissue features. With the increasing access to digitized histopathology images, color variation and its implications have become a critical issue. These variations are the result of not only a variety of factors involved in the preparation of tissue slides but also in the digitization process itself. Consequently, different strategies have been proposed to alleviate stain-related tissue inconsistencies in automatic image analysis systems. Such techniques generally rely on collecting color statistics to perform color matching across images. In this work, we propose a different approach for stain normalization that we refer to as stain transfer. We design a discriminative image analysis model equipped with a stain normalization component that transfers stains across datasets. Our model comprises a generative network that learns data set-specific staining properties and image-specific color transformations as well as a task-specific network (e.g., classifier or segmentation network). The model is trained end-to-end using a multi-objective cost function. We evaluate the proposed approach in the context of automatic histopathology image analysis on three data sets and two different analysis tasks: tissue segmentation and classification. The proposed method achieves superior results in terms of accuracy and quality of normalized images compared to various baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xi关注了科研通微信公众号
刚刚
sandra发布了新的文献求助10
刚刚
1秒前
remimazolam发布了新的文献求助10
1秒前
kingkong完成签到,获得积分20
2秒前
aabsd完成签到,获得积分10
2秒前
CipherSage应助聪明摩托采纳,获得10
2秒前
2秒前
3秒前
freebird发布了新的文献求助30
4秒前
科研通AI5应助WendyWen采纳,获得200
5秒前
fairy发布了新的文献求助10
5秒前
Super完成签到,获得积分10
6秒前
搜集达人应助月禾采纳,获得10
7秒前
科研狗完成签到,获得积分10
7秒前
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
KK完成签到,获得积分10
7秒前
7秒前
Jasper应助科研通管家采纳,获得10
8秒前
8秒前
36456657应助科研通管家采纳,获得10
8秒前
苏卿应助科研通管家采纳,获得10
8秒前
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
缓慢如南应助科研通管家采纳,获得10
8秒前
橙子发布了新的文献求助10
8秒前
Jason应助科研通管家采纳,获得20
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
9秒前
苏卿应助科研通管家采纳,获得10
9秒前
liuran应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
科研通AI5应助zmy采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199