Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets

随机森林 可解释性 支持向量机 计算机科学 水准点(测量) 机器学习 线性模型 人工智能 数量结构-活动关系 对比度(视觉) 回归 数据挖掘 数学 统计 大地测量学 地理
作者
Richard Marchese Robinson,Anna Palczewska,Jan Palczewski,Nathan J. Kidley
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:57 (8): 1773-1792 被引量:116
标识
DOI:10.1021/acs.jcim.6b00753
摘要

The ability to interpret the predictions made by quantitative structure–activity relationships (QSARs) offers a number of advantages. While QSARs built using nonlinear modeling approaches, such as the popular Random Forest algorithm, might sometimes be more predictive than those built using linear modeling approaches, their predictions have been perceived as difficult to interpret. However, a growing number of approaches have been proposed for interpreting nonlinear QSAR models in general and Random Forest in particular. In the current work, we compare the performance of Random Forest to those of two widely used linear modeling approaches: linear Support Vector Machines (SVMs) (or Support Vector Regression (SVR)) and partial least-squares (PLS). We compare their performance in terms of their predictivity as well as the chemical interpretability of the predictions using novel scoring schemes for assessing heat map images of substructural contributions. We critically assess different approaches for interpreting Random Forest models as well as for obtaining predictions from the forest. We assess the models on a large number of widely employed public-domain benchmark data sets corresponding to regression and binary classification problems of relevance to hit identification and toxicology. We conclude that Random Forest typically yields comparable or possibly better predictive performance than the linear modeling approaches and that its predictions may also be interpreted in a chemically and biologically meaningful way. In contrast to earlier work looking at interpretation of nonlinear QSAR models, we directly compare two methodologically distinct approaches for interpreting Random Forest models. The approaches for interpreting Random Forest assessed in our article were implemented using open-source programs that we have made available to the community. These programs are the rfFC package (https://r-forge.r-project.org/R/?group_id=1725) for the R statistical programming language and the Python program HeatMapWrapper [https://doi.org/10.5281/zenodo.495163] for heat map generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助MEDwhy采纳,获得10
1秒前
科研通AI5应助YJ888采纳,获得10
4秒前
农夫完成签到,获得积分0
4秒前
4秒前
6秒前
wonder123发布了新的文献求助10
11秒前
12秒前
13秒前
Lyn发布了新的文献求助10
14秒前
柴胡完成签到,获得积分10
14秒前
大个应助wonder123采纳,获得10
15秒前
FashionBoy应助lan采纳,获得10
16秒前
善学以致用应助doiwanado采纳,获得10
17秒前
18秒前
18秒前
眼睛大如天完成签到,获得积分10
19秒前
slx发布了新的文献求助100
20秒前
风趣依瑶发布了新的文献求助10
21秒前
PAN完成签到,获得积分20
21秒前
haha发布了新的文献求助10
21秒前
21秒前
科研民工_郭完成签到,获得积分10
23秒前
吕子尚发布了新的文献求助10
24秒前
淡定落雁发布了新的文献求助10
24秒前
cis2014发布了新的文献求助10
24秒前
Mxj0607发布了新的文献求助10
25秒前
26秒前
wudizhuzhu233完成签到,获得积分10
26秒前
赘婿应助123456采纳,获得10
28秒前
28秒前
29秒前
29秒前
29秒前
不一样的烟火完成签到,获得积分10
31秒前
hmd_150完成签到,获得积分10
31秒前
sssss发布了新的文献求助10
32秒前
wudizhuzhu233发布了新的文献求助10
33秒前
Aswl完成签到 ,获得积分10
33秒前
33秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176