Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets

随机森林 可解释性 支持向量机 计算机科学 水准点(测量) 机器学习 线性模型 人工智能 数量结构-活动关系 对比度(视觉) 回归 数据挖掘 数学 统计 大地测量学 地理
作者
Richard Marchese Robinson,Anna Palczewska,Jan Palczewski,Nathan J. Kidley
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:57 (8): 1773-1792 被引量:116
标识
DOI:10.1021/acs.jcim.6b00753
摘要

The ability to interpret the predictions made by quantitative structure–activity relationships (QSARs) offers a number of advantages. While QSARs built using nonlinear modeling approaches, such as the popular Random Forest algorithm, might sometimes be more predictive than those built using linear modeling approaches, their predictions have been perceived as difficult to interpret. However, a growing number of approaches have been proposed for interpreting nonlinear QSAR models in general and Random Forest in particular. In the current work, we compare the performance of Random Forest to those of two widely used linear modeling approaches: linear Support Vector Machines (SVMs) (or Support Vector Regression (SVR)) and partial least-squares (PLS). We compare their performance in terms of their predictivity as well as the chemical interpretability of the predictions using novel scoring schemes for assessing heat map images of substructural contributions. We critically assess different approaches for interpreting Random Forest models as well as for obtaining predictions from the forest. We assess the models on a large number of widely employed public-domain benchmark data sets corresponding to regression and binary classification problems of relevance to hit identification and toxicology. We conclude that Random Forest typically yields comparable or possibly better predictive performance than the linear modeling approaches and that its predictions may also be interpreted in a chemically and biologically meaningful way. In contrast to earlier work looking at interpretation of nonlinear QSAR models, we directly compare two methodologically distinct approaches for interpreting Random Forest models. The approaches for interpreting Random Forest assessed in our article were implemented using open-source programs that we have made available to the community. These programs are the rfFC package (https://r-forge.r-project.org/R/?group_id=1725) for the R statistical programming language and the Python program HeatMapWrapper [https://doi.org/10.5281/zenodo.495163] for heat map generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
云语发布了新的文献求助10
1秒前
芈钥完成签到 ,获得积分10
1秒前
1秒前
wonder123应助iron采纳,获得10
3秒前
xixi完成签到,获得积分10
3秒前
4秒前
4秒前
Steven发布了新的文献求助10
4秒前
4秒前
RalphY应助繁荣的路灯采纳,获得10
5秒前
XY完成签到,获得积分20
5秒前
飘锅完成签到,获得积分10
7秒前
8秒前
xlong发布了新的文献求助10
8秒前
wgglegg发布了新的文献求助10
8秒前
9秒前
NexusExplorer应助栗子鱼采纳,获得10
9秒前
9秒前
zzznznnn发布了新的文献求助10
9秒前
NexusExplorer应助pjh采纳,获得10
10秒前
大布丁完成签到,获得积分10
10秒前
Aspirin完成签到 ,获得积分10
11秒前
清爽的雨竹完成签到 ,获得积分10
11秒前
12秒前
涓涓溪水完成签到,获得积分10
12秒前
专注的从筠完成签到,获得积分10
12秒前
云语完成签到,获得积分10
12秒前
shi发布了新的文献求助10
13秒前
桐桐应助墨水采纳,获得10
13秒前
14秒前
木子发布了新的文献求助10
14秒前
水杯不离手完成签到 ,获得积分10
16秒前
16秒前
17秒前
18秒前
19秒前
ZERO完成签到,获得积分10
19秒前
满堂花醉完成签到,获得积分20
20秒前
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244488
求助须知:如何正确求助?哪些是违规求助? 2888195
关于积分的说明 8251774
捐赠科研通 2556637
什么是DOI,文献DOI怎么找? 1385076
科研通“疑难数据库(出版商)”最低求助积分说明 649990
邀请新用户注册赠送积分活动 626132