A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm

萤火虫算法 粒子群优化 算法 计算机科学 数学优化 人口 维数(图论) 结转(投资) Broyden–Fletcher–Goldfarb–Shanno算法 操作员(生物学) 混合算法(约束满足) 局部搜索(优化) 数学 利用 人口学 财务 纯数学 化学 约束逻辑程序设计 约束规划 经济 抑制因子 计算机安全 社会学 随机规划 基因 转录因子 生物化学
作者
Xuewen Xia,Ling Gui,Guoliang He,Chengwang Xie,Bo Wei,Ying Xing,Ruifeng Wu,Yichao Tang
出处
期刊:Journal of Computational Science [Elsevier BV]
卷期号:26: 488-500 被引量:84
标识
DOI:10.1016/j.jocs.2017.07.009
摘要

As two widely used evolutionary algorithms, particle swarm optimization (PSO) and firefly algorithm (FA) have been successfully applied to diverse difficult applications. And extensive experiments verify their own merits and characteristics. To efficiently utilize different advantages of PSO and FA, three novel operators are proposed in a hybrid optimizer based on the two algorithms, named as FAPSO in this paper. Firstly, the population of FAPSO is divided into two sub-populations selecting FA and PSO as their basic algorithm to carry out the optimization process, respectively. To exchange the information of the two sub-populations and then efficiently utilize the merits of PSO and FA, the sub-populations share their own optimal solutions while they have stagnated more than a predefined threshold. Secondly, each dimension of the search space is divided into many small-sized sub-regions, based on which much historical knowledge is recorded to help the current best solution to carry out a detecting operator. The purposeful detecting operator enables the population to find a more promising sub-region, and then jumps out of a possible local optimum. Lastly, a classical local search strategy, i.e., BFGS Quasi-Newton method, is introduced to improve the exploitative capability of FAPSO. Extensive simulations upon different functions demonstrate that FAPSO is not only outperforms the two basic algorithm, i.e., FA and PSO, but also surpasses some state-of-the-art variants of FA and PSO, as well as two hybrid algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanzheng发布了新的文献求助10
1秒前
咸鱼完成签到 ,获得积分10
1秒前
我不是笨蛋完成签到,获得积分10
1秒前
1秒前
LUMOS发布了新的文献求助30
1秒前
哈基米德应助qq采纳,获得20
1秒前
干饭虫应助萧倚禾采纳,获得10
2秒前
2秒前
lj发布了新的文献求助10
3秒前
哈基米德应助呆桃采纳,获得20
4秒前
4秒前
言希发布了新的文献求助10
5秒前
5秒前
5秒前
Owen应助醉熏的皮卡丘采纳,获得10
6秒前
酷波er应助欣欣子采纳,获得10
6秒前
6秒前
TK完成签到,获得积分10
7秒前
bab发布了新的文献求助20
7秒前
星辰大海应助hnwang98采纳,获得10
7秒前
栗子应助王雯丽采纳,获得10
8秒前
8秒前
8秒前
等等完成签到,获得积分10
10秒前
小杭76应助guozizi采纳,获得10
10秒前
10秒前
英俊的铭应助无心的初雪采纳,获得30
10秒前
扶桑发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
栗子发布了新的文献求助10
13秒前
等待的道消完成签到,获得积分10
13秒前
xxfsx举报知性的雅彤求助涉嫌违规
13秒前
13秒前
14秒前
14秒前
王澄橙完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Social work values and ethics (6th ed.) 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5180491
求助须知:如何正确求助?哪些是违规求助? 4367921
关于积分的说明 13600823
捐赠科研通 4218743
什么是DOI,文献DOI怎么找? 2313774
邀请新用户注册赠送积分活动 1312578
关于科研通互助平台的介绍 1261128