已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm

萤火虫算法 粒子群优化 算法 计算机科学 数学优化 人口 维数(图论) 结转(投资) Broyden–Fletcher–Goldfarb–Shanno算法 操作员(生物学) 混合算法(约束满足) 局部搜索(优化) 数学 利用 人口学 财务 纯数学 化学 约束逻辑程序设计 约束规划 经济 抑制因子 计算机安全 社会学 随机规划 基因 转录因子 生物化学
作者
Xuewen Xia,Ling Gui,Guoliang He,Chengwang Xie,Bo Wei,Ying Xing,Ruifeng Wu,Yichao Tang
出处
期刊:Journal of Computational Science [Elsevier BV]
卷期号:26: 488-500 被引量:84
标识
DOI:10.1016/j.jocs.2017.07.009
摘要

As two widely used evolutionary algorithms, particle swarm optimization (PSO) and firefly algorithm (FA) have been successfully applied to diverse difficult applications. And extensive experiments verify their own merits and characteristics. To efficiently utilize different advantages of PSO and FA, three novel operators are proposed in a hybrid optimizer based on the two algorithms, named as FAPSO in this paper. Firstly, the population of FAPSO is divided into two sub-populations selecting FA and PSO as their basic algorithm to carry out the optimization process, respectively. To exchange the information of the two sub-populations and then efficiently utilize the merits of PSO and FA, the sub-populations share their own optimal solutions while they have stagnated more than a predefined threshold. Secondly, each dimension of the search space is divided into many small-sized sub-regions, based on which much historical knowledge is recorded to help the current best solution to carry out a detecting operator. The purposeful detecting operator enables the population to find a more promising sub-region, and then jumps out of a possible local optimum. Lastly, a classical local search strategy, i.e., BFGS Quasi-Newton method, is introduced to improve the exploitative capability of FAPSO. Extensive simulations upon different functions demonstrate that FAPSO is not only outperforms the two basic algorithm, i.e., FA and PSO, but also surpasses some state-of-the-art variants of FA and PSO, as well as two hybrid algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ye给Ye的求助进行了留言
2秒前
小马甲应助yeah采纳,获得10
4秒前
李健应助关关采纳,获得10
5秒前
温暖完成签到,获得积分10
8秒前
Ania99完成签到 ,获得积分10
8秒前
小冉完成签到 ,获得积分10
11秒前
SciGPT应助王津丹采纳,获得10
11秒前
13秒前
15秒前
核桃应助swx采纳,获得10
16秒前
科目三应助杳霭流玉采纳,获得10
16秒前
英姑应助初初采纳,获得10
17秒前
乐乐应助关关采纳,获得10
18秒前
伶俐的威发布了新的文献求助30
19秒前
duke完成签到 ,获得积分10
22秒前
111111111完成签到,获得积分10
22秒前
YCQ发布了新的文献求助10
22秒前
桐桐应助YCQ采纳,获得10
26秒前
28秒前
无花果应助流萤采纳,获得10
28秒前
30秒前
伶俐的威完成签到,获得积分10
31秒前
方班术发布了新的文献求助10
34秒前
铁臂阿童木完成签到 ,获得积分10
39秒前
46秒前
Soleil发布了新的文献求助10
47秒前
48秒前
venkash完成签到,获得积分10
49秒前
明眸完成签到 ,获得积分10
50秒前
VDC发布了新的文献求助30
51秒前
joy完成签到,获得积分10
51秒前
53秒前
关关发布了新的文献求助10
58秒前
59秒前
Soleil完成签到,获得积分10
59秒前
大家好完成签到 ,获得积分10
1分钟前
张航完成签到,获得积分10
1分钟前
1分钟前
圆彰七大完成签到 ,获得积分10
1分钟前
iNk应助张航采纳,获得20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539397
求助须知:如何正确求助?哪些是违规求助? 3973545
关于积分的说明 12309084
捐赠科研通 3640493
什么是DOI,文献DOI怎么找? 2004530
邀请新用户注册赠送积分活动 1039921
科研通“疑难数据库(出版商)”最低求助积分说明 929108