A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm

萤火虫算法 粒子群优化 算法 计算机科学 数学优化 人口 维数(图论) 结转(投资) Broyden–Fletcher–Goldfarb–Shanno算法 操作员(生物学) 混合算法(约束满足) 局部搜索(优化) 数学 利用 人口学 财务 纯数学 化学 约束逻辑程序设计 约束规划 经济 抑制因子 计算机安全 社会学 随机规划 基因 转录因子 生物化学
作者
Xuewen Xia,Ling Gui,Guoliang He,Chengwang Xie,Bo Wei,Ying Xing,Ruifeng Wu,Yichao Tang
出处
期刊:Journal of Computational Science [Elsevier]
卷期号:26: 488-500 被引量:84
标识
DOI:10.1016/j.jocs.2017.07.009
摘要

As two widely used evolutionary algorithms, particle swarm optimization (PSO) and firefly algorithm (FA) have been successfully applied to diverse difficult applications. And extensive experiments verify their own merits and characteristics. To efficiently utilize different advantages of PSO and FA, three novel operators are proposed in a hybrid optimizer based on the two algorithms, named as FAPSO in this paper. Firstly, the population of FAPSO is divided into two sub-populations selecting FA and PSO as their basic algorithm to carry out the optimization process, respectively. To exchange the information of the two sub-populations and then efficiently utilize the merits of PSO and FA, the sub-populations share their own optimal solutions while they have stagnated more than a predefined threshold. Secondly, each dimension of the search space is divided into many small-sized sub-regions, based on which much historical knowledge is recorded to help the current best solution to carry out a detecting operator. The purposeful detecting operator enables the population to find a more promising sub-region, and then jumps out of a possible local optimum. Lastly, a classical local search strategy, i.e., BFGS Quasi-Newton method, is introduced to improve the exploitative capability of FAPSO. Extensive simulations upon different functions demonstrate that FAPSO is not only outperforms the two basic algorithm, i.e., FA and PSO, but also surpasses some state-of-the-art variants of FA and PSO, as well as two hybrid algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
周士乐发布了新的文献求助10
1秒前
Sunshine发布了新的文献求助10
1秒前
呼吸之野完成签到,获得积分10
2秒前
害怕的小懒虫完成签到,获得积分10
2秒前
思源应助Nefelibata采纳,获得10
3秒前
妮儿发布了新的文献求助10
3秒前
BareBear应助rosa采纳,获得10
3秒前
沉默凡桃发布了新的文献求助10
4秒前
Orange应助9℃采纳,获得10
4秒前
4秒前
一只橘子完成签到 ,获得积分10
4秒前
5秒前
韭黄发布了新的文献求助10
5秒前
西瓜发布了新的文献求助10
5秒前
Ll发布了新的文献求助10
5秒前
5秒前
wcy关注了科研通微信公众号
5秒前
6秒前
6秒前
CipherSage应助爱喝冰可乐采纳,获得10
7秒前
7秒前
bdvdsrwteges完成签到,获得积分10
7秒前
鱼雷完成签到,获得积分10
8秒前
8秒前
天天快乐应助喜洋洋采纳,获得10
8秒前
PANSIXUAN完成签到 ,获得积分10
9秒前
善良香岚发布了新的文献求助10
9秒前
9秒前
huizi完成签到,获得积分20
9秒前
RichardZ完成签到,获得积分10
9秒前
9秒前
左左发布了新的文献求助10
10秒前
执着的怜寒应助哈哈哈haha采纳,获得40
10秒前
Cassie完成签到 ,获得积分10
11秒前
11秒前
雄i完成签到,获得积分10
11秒前
Chenly完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759