Assessing patient risk of central line-associated bacteremia via machine learning

医学 菌血症 中心线 直线(几何图形) 重症监护医学 微生物学 抗生素 数学 几何学 生物
作者
Cole Beeler,Lana Dbeibo,Kristen Kelley,Levi Thatcher,Douglas Webb,Amadou Bah,Patrick O. Monahan,Nicole R. Fowler,Spencer Nicol,Alisa Judy-Malcolm,Jose Azar
出处
期刊:American Journal of Infection Control [Elsevier BV]
卷期号:46 (9): 986-991 被引量:40
标识
DOI:10.1016/j.ajic.2018.02.021
摘要

•Machine learning is being increasingly used in healthcare to predict risk. •Its models offer avoidance of bias, personalization, and a nonlinear approach. •We describe the development of a model to predict CLABSI, yielding an AUROC of 0.82. •Infection preventionists use this model to target interventions to high-risk patients to save time. Background Central line-associated bloodstream infections (CLABSIs) contribute to increased morbidity, length of hospital stay, and cost. Despite progress in understanding the risk factors, there remains a need to accurately predict the risk of CLABSIs and, in real time, prevent them from occurring. Methods A predictive model was developed using retrospective data from a large academic healthcare system. Models were developed with machine learning via construction of random forests using validated input variables. Results Fifteen variables accounted for the most significant effect on CLABSI prediction based on a retrospective study of 70,218 unique patient encounters between January 1, 2013, and May 31, 2016. The area under the receiver operating characteristic curve for the best-performing model was 0.82 in production. Discussion This model has multiple applications for resource allocation for CLABSI prevention, including serving as a tool to target patients at highest risk for potentially cost-effective but otherwise time-limited interventions. Conclusions Machine learning can be used to develop accurate models to predict the risk of CLABSI in real time prior to the development of infection. Central line-associated bloodstream infections (CLABSIs) contribute to increased morbidity, length of hospital stay, and cost. Despite progress in understanding the risk factors, there remains a need to accurately predict the risk of CLABSIs and, in real time, prevent them from occurring. A predictive model was developed using retrospective data from a large academic healthcare system. Models were developed with machine learning via construction of random forests using validated input variables. Fifteen variables accounted for the most significant effect on CLABSI prediction based on a retrospective study of 70,218 unique patient encounters between January 1, 2013, and May 31, 2016. The area under the receiver operating characteristic curve for the best-performing model was 0.82 in production. This model has multiple applications for resource allocation for CLABSI prevention, including serving as a tool to target patients at highest risk for potentially cost-effective but otherwise time-limited interventions. Machine learning can be used to develop accurate models to predict the risk of CLABSI in real time prior to the development of infection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助香山叶正红采纳,获得10
刚刚
蜜HHH完成签到 ,获得积分10
1秒前
孙燕应助TT2022采纳,获得30
1秒前
烟花应助无辜的大雁采纳,获得10
2秒前
4秒前
丘比特应助脑子大聪明采纳,获得10
6秒前
慕青应助Csene采纳,获得10
7秒前
8秒前
Arthur完成签到 ,获得积分10
9秒前
chancewong发布了新的文献求助10
9秒前
9秒前
ssf完成签到,获得积分10
9秒前
研友_VZG7GZ应助szfan123采纳,获得10
10秒前
11秒前
赵乂发布了新的文献求助10
12秒前
Ace完成签到,获得积分10
12秒前
zhangyu应助曹宏达采纳,获得10
13秒前
17秒前
AUK完成签到,获得积分10
18秒前
apoptoxin4896完成签到,获得积分10
20秒前
AUK发布了新的文献求助10
21秒前
阿旭完成签到 ,获得积分10
21秒前
机灵剑通发布了新的文献求助10
21秒前
22秒前
22秒前
chancewong完成签到,获得积分10
23秒前
25秒前
26秒前
流星也醉酒完成签到 ,获得积分20
28秒前
充电宝应助像风一样啊采纳,获得10
29秒前
云舒发布了新的文献求助10
30秒前
江月渡完成签到,获得积分10
30秒前
fatcat发布了新的文献求助30
32秒前
kk完成签到,获得积分10
35秒前
36秒前
36秒前
37秒前
万能图书馆应助Vincent1990采纳,获得10
37秒前
39秒前
谢俏艳完成签到,获得积分10
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993971
求助须知:如何正确求助?哪些是违规求助? 3534571
关于积分的说明 11265961
捐赠科研通 3274483
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883224
科研通“疑难数据库(出版商)”最低求助积分说明 809712