Assessing patient risk of central line-associated bacteremia via machine learning

医学 菌血症 中心线 直线(几何图形) 重症监护医学 微生物学 抗生素 几何学 数学 生物
作者
Cole Beeler,Lana Dbeibo,Kristen Kelley,Levi Thatcher,Douglas Webb,Amadou Bah,Patrick O. Monahan,Nicole R. Fowler,Spencer Nicol,Alisa Judy-Malcolm,Jose Azar
出处
期刊:American Journal of Infection Control [Elsevier BV]
卷期号:46 (9): 986-991 被引量:40
标识
DOI:10.1016/j.ajic.2018.02.021
摘要

•Machine learning is being increasingly used in healthcare to predict risk. •Its models offer avoidance of bias, personalization, and a nonlinear approach. •We describe the development of a model to predict CLABSI, yielding an AUROC of 0.82. •Infection preventionists use this model to target interventions to high-risk patients to save time. Background Central line-associated bloodstream infections (CLABSIs) contribute to increased morbidity, length of hospital stay, and cost. Despite progress in understanding the risk factors, there remains a need to accurately predict the risk of CLABSIs and, in real time, prevent them from occurring. Methods A predictive model was developed using retrospective data from a large academic healthcare system. Models were developed with machine learning via construction of random forests using validated input variables. Results Fifteen variables accounted for the most significant effect on CLABSI prediction based on a retrospective study of 70,218 unique patient encounters between January 1, 2013, and May 31, 2016. The area under the receiver operating characteristic curve for the best-performing model was 0.82 in production. Discussion This model has multiple applications for resource allocation for CLABSI prevention, including serving as a tool to target patients at highest risk for potentially cost-effective but otherwise time-limited interventions. Conclusions Machine learning can be used to develop accurate models to predict the risk of CLABSI in real time prior to the development of infection. Central line-associated bloodstream infections (CLABSIs) contribute to increased morbidity, length of hospital stay, and cost. Despite progress in understanding the risk factors, there remains a need to accurately predict the risk of CLABSIs and, in real time, prevent them from occurring. A predictive model was developed using retrospective data from a large academic healthcare system. Models were developed with machine learning via construction of random forests using validated input variables. Fifteen variables accounted for the most significant effect on CLABSI prediction based on a retrospective study of 70,218 unique patient encounters between January 1, 2013, and May 31, 2016. The area under the receiver operating characteristic curve for the best-performing model was 0.82 in production. This model has multiple applications for resource allocation for CLABSI prevention, including serving as a tool to target patients at highest risk for potentially cost-effective but otherwise time-limited interventions. Machine learning can be used to develop accurate models to predict the risk of CLABSI in real time prior to the development of infection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
thangxtz完成签到,获得积分10
1秒前
李翔发布了新的文献求助10
1秒前
aa完成签到,获得积分10
2秒前
花小胖发布了新的文献求助10
2秒前
沉默芸完成签到,获得积分20
4秒前
酷波er应助呆萌羊青采纳,获得10
5秒前
5秒前
科研通AI5应助仙人掌采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
我要毕业发布了新的文献求助10
5秒前
sunsuan完成签到,获得积分10
6秒前
6秒前
man完成签到,获得积分20
7秒前
qiuyutingchan发布了新的文献求助30
7秒前
天天快乐应助耍酷芙蓉采纳,获得10
8秒前
Attempter完成签到,获得积分10
8秒前
谦让念之完成签到,获得积分10
8秒前
yyauthor完成签到,获得积分10
9秒前
北克完成签到 ,获得积分10
9秒前
迷路严青完成签到 ,获得积分10
9秒前
ylf完成签到,获得积分10
10秒前
10秒前
科目三应助欢喜寄云采纳,获得10
10秒前
orange完成签到,获得积分10
10秒前
今后应助NI采纳,获得10
11秒前
小姚完成签到,获得积分10
12秒前
科研通AI5应助东京芝士123采纳,获得10
12秒前
炒菜别忘记放颜完成签到 ,获得积分10
13秒前
sssss完成签到,获得积分10
13秒前
wanci应助陈微采纳,获得10
14秒前
14秒前
Plucky完成签到,获得积分10
14秒前
Yuhaoo完成签到 ,获得积分10
15秒前
15秒前
15秒前
老实莫言完成签到,获得积分10
15秒前
科研通AI6应助哈喽小雪采纳,获得10
15秒前
化学完成签到,获得积分10
15秒前
付y凯关注了科研通微信公众号
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954553
求助须知:如何正确求助?哪些是违规求助? 4216890
关于积分的说明 13121171
捐赠科研通 3999023
什么是DOI,文献DOI怎么找? 2188625
邀请新用户注册赠送积分活动 1203758
关于科研通互助平台的介绍 1116092