Assessing patient risk of central line-associated bacteremia via machine learning

医学 菌血症 中心线 直线(几何图形) 重症监护医学 微生物学 抗生素 几何学 数学 生物
作者
Cole Beeler,Lana Dbeibo,Kristen Kelley,Levi Thatcher,Douglas Webb,Amadou Bah,Patrick O. Monahan,Nicole R. Fowler,Spencer Nicol,Alisa Judy-Malcolm,Jose Azar
出处
期刊:American Journal of Infection Control [Elsevier]
卷期号:46 (9): 986-991 被引量:40
标识
DOI:10.1016/j.ajic.2018.02.021
摘要

•Machine learning is being increasingly used in healthcare to predict risk. •Its models offer avoidance of bias, personalization, and a nonlinear approach. •We describe the development of a model to predict CLABSI, yielding an AUROC of 0.82. •Infection preventionists use this model to target interventions to high-risk patients to save time. Background Central line-associated bloodstream infections (CLABSIs) contribute to increased morbidity, length of hospital stay, and cost. Despite progress in understanding the risk factors, there remains a need to accurately predict the risk of CLABSIs and, in real time, prevent them from occurring. Methods A predictive model was developed using retrospective data from a large academic healthcare system. Models were developed with machine learning via construction of random forests using validated input variables. Results Fifteen variables accounted for the most significant effect on CLABSI prediction based on a retrospective study of 70,218 unique patient encounters between January 1, 2013, and May 31, 2016. The area under the receiver operating characteristic curve for the best-performing model was 0.82 in production. Discussion This model has multiple applications for resource allocation for CLABSI prevention, including serving as a tool to target patients at highest risk for potentially cost-effective but otherwise time-limited interventions. Conclusions Machine learning can be used to develop accurate models to predict the risk of CLABSI in real time prior to the development of infection. Central line-associated bloodstream infections (CLABSIs) contribute to increased morbidity, length of hospital stay, and cost. Despite progress in understanding the risk factors, there remains a need to accurately predict the risk of CLABSIs and, in real time, prevent them from occurring. A predictive model was developed using retrospective data from a large academic healthcare system. Models were developed with machine learning via construction of random forests using validated input variables. Fifteen variables accounted for the most significant effect on CLABSI prediction based on a retrospective study of 70,218 unique patient encounters between January 1, 2013, and May 31, 2016. The area under the receiver operating characteristic curve for the best-performing model was 0.82 in production. This model has multiple applications for resource allocation for CLABSI prevention, including serving as a tool to target patients at highest risk for potentially cost-effective but otherwise time-limited interventions. Machine learning can be used to develop accurate models to predict the risk of CLABSI in real time prior to the development of infection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kiana完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助20
1秒前
大狼完成签到,获得积分10
1秒前
mufcyang完成签到,获得积分10
1秒前
samurai发布了新的文献求助10
1秒前
2秒前
Agnes发布了新的文献求助10
2秒前
pp发布了新的文献求助10
2秒前
哈哈哈哈完成签到,获得积分10
2秒前
大尾巴白发布了新的文献求助10
3秒前
3秒前
ocean完成签到,获得积分10
3秒前
郭6666完成签到,获得积分10
4秒前
llly发布了新的文献求助10
4秒前
沉默诗兰完成签到,获得积分10
4秒前
4秒前
zho发布了新的文献求助10
4秒前
科研人发布了新的文献求助10
5秒前
stoneff612发布了新的文献求助10
5秒前
6秒前
MarsXHXL发布了新的文献求助10
6秒前
栀尽夏完成签到,获得积分10
6秒前
无花果应助呼啦啦采纳,获得10
6秒前
6秒前
Yang完成签到,获得积分10
6秒前
萧东辰完成签到,获得积分10
6秒前
6秒前
活泼学生完成签到,获得积分10
6秒前
7秒前
Li完成签到,获得积分10
7秒前
轻松盼雁完成签到,获得积分10
7秒前
7秒前
包容寻芹完成签到,获得积分10
7秒前
lilyz615完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
1433223完成签到,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017