胶束
MMP2型
生物物理学
细胞毒性
体内分布
化学
基质金属蛋白酶
药理学
材料科学
癌症研究
生物化学
体外
医学
生物
下调和上调
基因
物理化学
水溶液
作者
Qing Yao,Jong Hoon Choi,Zhi Dai,Jiao Wang,Dongin Kim,Xing Tang,Lin Zhu
标识
DOI:10.1021/acsami.7b12233
摘要
To improve tumor targetability and drug efficacy and decrease drug resistance of dasatinib (DSB), the multifunctional micellar nanoparticles that combined the matrix metalloproteinase 2 (MMP2)-sensitive tumor (site) targeting with folate receptor-mediated tumor (cell) targeting were developed. Two major functional polymers, polyethylene glycol (5000 Da)-MMP2-sensitive peptide-phosphoethanolamine (PEG5k-pp-PE) and folic acid-polyethylene glycol (2000 Da)-phosphoethanolamine (FA-PEG2k-PE), were synthesized to construct the dual-targeted micellar nanoparticles (MMP/FR micelles). In the absence of MMP2, the FA was shielded by PEG5k and the MMP/FR micelles showed low bioactivity. In the presence of MMP2, the nanoparticulate structure, stability, and cargo release profile of the MMP/FR micelles were not significantly affected, however, the MMP2-mediated PEG5k deshielding and FA exposure remarkably increased the cellular uptake and anticancer activity of the micelles in the MMP2 and FR expressing (MMP2+/FR+) cells, including multidrug resistant (MDR) cancer cells, rather than the MMP2- and FR- cells. In the 3D MDR tumor spheroids, the significant MMP2-dependent tissue penetration, uptake and cytotoxicity of the MMP/FR micelles were also observed. Furthermore, in the in vivo biodistribution study, the MMP2 and FR dual targeting strategy could significantly prolong the systemic circulation, decrease the nonspecific distribution in nontumor tissues, and increase the tumor accumulation of the polymeric micelles in a melanoma xenograft mouse model. The MMP2-sensitive FR-targeted micelles might have great potential as a tumor-targeted platform for delivery of molecular targeted therapeutics.
科研通智能强力驱动
Strongly Powered by AbleSci AI