A 250m annual alpine grassland AGB dataset over the Qinghai-Tibetan Plateau (2000–2019) based on in-situ measurements, UAV images, and MODIS Data

样方 草原 环境科学 遥感 比例(比率) 像素 高原(数学) 植被(病理学) 采样(信号处理) 空间生态学 匹配(统计) 自然地理学 地理 地图学 计算机科学 统计 数学 生态学 灌木 人工智能 探测器 数学分析 生物 医学 电信 病理
作者
Huifang Zhang,Zhonggang Tang,Binyao Wang,Hongcheng Kan,Yi Sun,Yu Qin,Baoping Meng,Meng Li,Jianjun Chen,Yanyan Lv,Jianguo Zhang,Shuli Niu,Shuhua Yi
标识
DOI:10.5194/essd-2022-210
摘要

Abstract. The alpine grassland ecosystem accounts for 53 % of the Qinghai-Tibet Plateau (QTP) area, which is an important ecological protection barrier, but fragile and highly vulnerable to climate change. Therefore, continuous monitoring of the aboveground biomass (AGB) of grassland is necessary. Although many studies have mapped the spatial distribution of AGB over the QTP, the results vary widely due to the limited ground samples and mismatches with satellite pixel scales. This paper proposed a new algorithm using unmanned aerial vehicles (UAVs) as a bridge to re-estimate the grassland AGB over the QTP from 2000 to 2019. The innovations were as follows: 1) In the aspect of ground data collection, the spatial scale matching among the traditional ground quadrat sampling, UAV photos, and MODIS pixels was fully considered. From 2015 to 2019, 906 pairs of ground-UAV sample data at the quadrat scale and 2,602 sets of UAV data matching the MODIS pixel scale were collected. A total of more than 37,000 UAV photos were captured at the height of 20 meters. Therefore, the ground validation samples was sufficient and scale matched. 2) In terms of model construction, the traditional quadrat scale (0.25 m2) was successfully upscaled to the MODIS pixel scale (6,2500 m2) based on the random forest method and stepwise upscaling scheme. Compared with previous studies, the scale matching of independent and dependent variables was realized, effectively reducing the impact of scale mismatch. At the pixel scale, the AGB value estimated by UAV had a more linear correlation with the MODIS vegetation indices than the traditional sampling method. The multi-year independent cross-validation results showed that the constructed pixel scale AGB estimation had good robustness, with an average R2 of 0.83 and RMSE of 34.13 g/m2. Our dataset provides an important input parameter for a comprehensive understanding of the QTP in the process of global climate change. The dataset is available from the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Terre.tpdc.272587, Zhang et al., 2022).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ryki发布了新的文献求助10
刚刚
Cheems发布了新的文献求助10
1秒前
DawudShan发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
乐观的思卉完成签到,获得积分10
3秒前
cc完成签到 ,获得积分10
3秒前
科研通AI2S应助闪亮的皮蛋采纳,获得10
4秒前
4秒前
小昊发布了新的文献求助10
4秒前
不二家的卡农完成签到,获得积分10
5秒前
6秒前
英俊的铭应助YutingLiu采纳,获得10
6秒前
llllliu完成签到,获得积分10
6秒前
闪闪绮山关注了科研通微信公众号
7秒前
8秒前
SciGPT应助不想看文献采纳,获得10
8秒前
DawudShan完成签到,获得积分10
8秒前
科研通AI2S应助cxt采纳,获得10
8秒前
8秒前
8秒前
enen发布了新的文献求助10
11秒前
11秒前
11秒前
zxe完成签到,获得积分10
14秒前
爱笑的汽车发布了新的文献求助200
14秒前
15秒前
15秒前
Nickname发布了新的文献求助200
16秒前
ann发布了新的文献求助10
16秒前
CipherSage应助MU采纳,获得50
16秒前
Yuan完成签到,获得积分10
18秒前
hx666发布了新的文献求助10
19秒前
橙花发布了新的文献求助10
20秒前
西蜀小吏发布了新的文献求助10
20秒前
李爱国应助17采纳,获得10
21秒前
21秒前
21秒前
Frieren完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513655
求助须知:如何正确求助?哪些是违规求助? 4607855
关于积分的说明 14507128
捐赠科研通 4543421
什么是DOI,文献DOI怎么找? 2489541
邀请新用户注册赠送积分活动 1471503
关于科研通互助平台的介绍 1443477