A 250m annual alpine grassland AGB dataset over the Qinghai-Tibetan Plateau (2000–2019) based on in-situ measurements, UAV images, and MODIS Data

样方 草原 环境科学 遥感 比例(比率) 像素 高原(数学) 植被(病理学) 采样(信号处理) 空间生态学 匹配(统计) 自然地理学 地理 地图学 计算机科学 统计 数学 生态学 灌木 人工智能 探测器 数学分析 生物 医学 电信 病理
作者
Huifang Zhang,Zhonggang Tang,Binyao Wang,Hongcheng Kan,Yi Sun,Yu Qin,Baoping Meng,Meng Li,Jianjun Chen,Yanyan Lv,Jianguo Zhang,Shuli Niu,Shuhua Yi
标识
DOI:10.5194/essd-2022-210
摘要

Abstract. The alpine grassland ecosystem accounts for 53 % of the Qinghai-Tibet Plateau (QTP) area, which is an important ecological protection barrier, but fragile and highly vulnerable to climate change. Therefore, continuous monitoring of the aboveground biomass (AGB) of grassland is necessary. Although many studies have mapped the spatial distribution of AGB over the QTP, the results vary widely due to the limited ground samples and mismatches with satellite pixel scales. This paper proposed a new algorithm using unmanned aerial vehicles (UAVs) as a bridge to re-estimate the grassland AGB over the QTP from 2000 to 2019. The innovations were as follows: 1) In the aspect of ground data collection, the spatial scale matching among the traditional ground quadrat sampling, UAV photos, and MODIS pixels was fully considered. From 2015 to 2019, 906 pairs of ground-UAV sample data at the quadrat scale and 2,602 sets of UAV data matching the MODIS pixel scale were collected. A total of more than 37,000 UAV photos were captured at the height of 20 meters. Therefore, the ground validation samples was sufficient and scale matched. 2) In terms of model construction, the traditional quadrat scale (0.25 m2) was successfully upscaled to the MODIS pixel scale (6,2500 m2) based on the random forest method and stepwise upscaling scheme. Compared with previous studies, the scale matching of independent and dependent variables was realized, effectively reducing the impact of scale mismatch. At the pixel scale, the AGB value estimated by UAV had a more linear correlation with the MODIS vegetation indices than the traditional sampling method. The multi-year independent cross-validation results showed that the constructed pixel scale AGB estimation had good robustness, with an average R2 of 0.83 and RMSE of 34.13 g/m2. Our dataset provides an important input parameter for a comprehensive understanding of the QTP in the process of global climate change. The dataset is available from the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Terre.tpdc.272587, Zhang et al., 2022).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大大完成签到,获得积分10
1秒前
4秒前
小蘑菇应助caitSith采纳,获得10
5秒前
凡凡完成签到,获得积分10
5秒前
yan发布了新的文献求助30
6秒前
科研通AI2S应助大力的图图采纳,获得10
7秒前
饺子完成签到,获得积分10
7秒前
7秒前
九月初五完成签到,获得积分10
7秒前
数星星发布了新的文献求助10
8秒前
明亮荔枝应助哦吼采纳,获得10
8秒前
pluto应助fafafa采纳,获得10
9秒前
9秒前
曾经的臻发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
苏东方完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
斐波拉切土豆完成签到 ,获得积分10
13秒前
lemishui完成签到,获得积分10
14秒前
火禾心羽发布了新的文献求助10
16秒前
深情安青应助哦吼采纳,获得10
16秒前
all661发布了新的文献求助10
18秒前
cadet发布了新的文献求助10
18秒前
19秒前
20秒前
23秒前
24秒前
研友_85rJEL发布了新的文献求助10
25秒前
祎祎完成签到,获得积分10
26秒前
科研通AI6.1应助顺顺过过采纳,获得10
26秒前
jackie able发布了新的文献求助10
27秒前
现代书雪发布了新的文献求助10
27秒前
温婉发布了新的文献求助10
27秒前
小y完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
伶俐妙海发布了新的文献求助100
30秒前
直率雨柏完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838